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Abstract

This paper establishes the nonparametric identification of the incentive regu-

lation model with ex post observed cost developed in Laffont and Tirole (1986).

We first extend the model to allow for general random demand and cost functions,

while considering a monopolist producing a private good. We then map the resulting

model into a structural econometric model that includes observed and unobserved

heterogeneity. We establish the nonparametric identification of the cost of public

funds, the demand, cost and effort functions, as well as the joint distribution of the

random elements of the structural model, which are the firm’s type, the demand

and cost shocks, and the unobserved heterogeneity.

Fields: Regulation, Optimal Contracts, Cost Efficiency, Nonparametric Identifica-

tion, Unobserved Heterogeneity.

Address: Pennsylvania State University, Department of Economics, University

Park, PA 16802.
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of Incentive Regulation Models
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1 Introduction

Over the past thirty years, economists have emphasized the fundamental role played by

asymmetric information in economic relationships. The imperfect knowledge of key eco-

nomic variables induces strategic behavior among economic agents. A simple example of

information asymmetries is an auction, in which the seller does not know bidders’ values

for the auctioned object and the bidders do not know their competitors’ values. As a

response, bidders play strategically. Game theory provides a useful tool for analyzing

such behaviors through the Bayesian Nash equilibrium. Contracts provide another im-

portant example of how information asymmetry governs relationships between a principal

who designs the contract and an agent. Two types of imperfect information can affect

contractual relationships, namely some agent’s hidden characteristics or type and some

agent’s hidden action or effort leading to the socalled adverse selection and moral hazard

problems, respectively.1 The agent plays strategically as he can misreport his own char-

acteristics and minimize effort. Thus, the principal has to give to the agent appropriate

incentives to alleviate such problems through the terms of the contract. See the book by

Laffont and Martimort (2001) on the theory of incentives.

1An auction model can be viewed as a model with adverse selection where bidders’ values can be

considered as hidden characteristics. The parallel between auctions and contracts will be emphasized

later in the paper.
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Contracts are widely used in the economic world. To name a few, agriculture, insur-

ance, retailing and management provide many examples of contractual relationships. In

this paper, we are interested in regulatory contracts between a regulatory authority or

regulator and a monopolistic firm. The government regulates firms to prevent natural

monopolistic behavior. Public agencies may also be concerned by redistribution aspects.

Several reasons motivate our interest. First, regulation governs many industries such

as utilities (electricity, water, gas, telecommunications) as well as many services (postal

service, public transit, railroad), which represent an important component of the econ-

omy. Second, data on regulatory contracts are more readily available than on “private”

ones. Given the public nature of regulatory commissions, data are in general accessible

to the analyst in contrast to private contracts, in which data may be subject to confi-

dentiality issues. Third, regulatory contracts are in general well defined in terms of the

objectives assigned to the regulated firm and the compensation arrangements made by

the regulator.2 Fourth, the economic literature provides a solid background to analyze

regulation in a framework of imperfect information as surveyed by Baron (1989), Laffont

and Tirole (1993) and Laffont (1994).3

The incentive regulation model introduced by Laffont and Tirole (1986) represents

a breakthrough in the new economics of regulation. This paper explains the trade-off

faced by the regulator between firm’s rent extraction and efficiency. This trade-off is the

key issue in incentive regulation in presence of information asymmetries. Namely, the

regulator has to provide some incentives to the firm to reveal its information or type as

well as to exert appropriate effort. Though the regulator would like to extract all the firm’s

rent as leaving rents to the firm is costly to society, the regulator must give up some rent

to achieve revelation and efficiency from the firm. Moreover, subsidizing the firm through

some monetary transfer requires additional taxes, which are costly to society.4 Laffont

and Tirole (1986) have shown that the regulator can achieve such a trade-off while using

2Private contracts can be under an implicit form or subject to many unspecified terms such as in

incomplete contracts.
3Laffont (1994) refers to the new economics of regulation in opposition to the classical theory of

regulation neglecting information asymmetries. The latter literature has provided, however, important

pricing rules such as the Ramsey-Boiteux and the peak-load pricing rules.
4The Laffont and Tirole (1986) model considers a case when transfers are legally possible. By federal

law, such transfers may be forbidden. Transfers in this case may take a different form.
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the expost observable costs in the transfer paid ex post to the firm.5 This results in an

increase of the social welfare relatively to the Baron and Myerson (1982) model in which

no expost cost information is used.6

In contrast to these important theoretical developments and the economic importance

of regulation in society, very few empirical studies relying on a structural modeling have

been performed. As a matter of fact, the empirical literature is mostly limited to a

reduced form approach as surveyed by Joskow and Rose (1989).7 Though this literature

acknowledges the presence of information asymmetries, very few papers have attempted to

estimate a regulatory contract model. Notable exceptions are Wolak (1994) and Brocas,

Chan and Perrigne (2006) for the regulation of water utilities, and Gagnepain and Ivaldi

(2002), Perrigne (2002) and Perrigne and Surana (2004) for public transit.8 This clearly

did not meet the expectation of theorists. Laffont (1994, p. 532) writes that the paper

by Wolak (1994) “is the first in a long series of applied works which will renew the

econometrics of regulation with the help of the new theory of regulation.” Similarly,

Laffont and Tirole (1993, p. 669) conclude that “econometric analyses are badly needed

in the area,” while they “do wish that such a core of empirical analysis will develop in

the years to come.”

Such high expectations have not been met because of the complexity of the models to

be estimated. Asymmetric information models lead to highly nonlinear models whose es-

timation requires suitable econometric tools. Moreover, the issue of identification needs to

be addressed.9 Parametric identification can in principle be achieved but the resulting em-

5Firms are usually submitted to an annual audit of their financial results and costs by the regulatory

commission. In western economies, accounting rules are well defined and such data are reliable. In

developing countries, the problem is somewhat different. Morever, the cost of public funds may be large.

Both characteristics lead to different incentive rules as shown by Laffont (2005).
6In addition to these nice features, the Laffont and Tirole (1986) model combines both adverse selection

and moral hazard by reducing the latter to a “false” moral hazard problem.
7Empirical studies have analyzed the effects of regulation on price, product quality, innovation and

productivity growth to name a few. The determinants of regulatory mechanisms have also been analyzed.

Some of these studies rely on natural experiments when a change in the regulatory process takes place.
8The situation is quite similar for the analysis of contract data in general. See the survey by Chiappori

and Salanié (2003).
9Another important related question is to derive the restrictions imposed by the model on observables

to test the model validity. Without such restrictions, the model could rationalize any data. The problem
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pirical findings are questionable as identification closely depends on particular functional

forms.10 Moreover, important misspecification issues may arise. The recent literature

on the structural analysis of auction models constitutes a stepping stone from which the

econometrics of contract models can develop.

In this paper, we adopt a nonparametric approach in the spirit of Guerre, Perrigne and

Vuong (2000) to address the identification of the incentive regulation model developed

by Laffont and Tirole (1986). Our results are general in the sense that other contract

models can be identified using a similar approach. We first need to adapt their model.

In particular, they consider the regulation of a public good with a fixed demand, while a

private good with a random demand seems to be the most prevalent case in regulation.11

The contract design then needs to consider expected demand, while the firm will have

to fullfill the realized demand. Additional difficulties lie in the contract implementation

and in checking whether the local second-order conditions are globally satisfied. In this

respect, some assumptions need to be revised accordingly.

We derive the corresponding structural econometric model. In particular, the error

terms must arise naturally from the theoretical model. We then face a number of compli-

cations. The structural elements are a demand function subject to some random shock, a

cost function depending on the unobserved firm’s type and effort subject to some random

shock, the cost of public funds, the effort disutility function and the firms’ type distrib-

ution. The observables are the (ex post) demand, the (ex post) cost, the price decided

by the regulator and the transfer paid to the firm. A first difficulty arises from the fact

that the firm’s effort and type, which can be viewed as firm’s unobserved heterogeneity,

are both unobserved. A second difficulty is related to the singularity of the model. Three

unobserved random variables (demand and cost random shocks and firm’s type) deter-

mine four endogenous variables (demand, cost, price and transfer). Thus, the econometric

of deriving restrictions and testing models is addressed in Perrigne and Vuong (2007a).
10The econometrics of auction models provides interesting examples in this respect. For instance, the

common value auction model can be estimated parametrically using specific distributions for the structure

of the model, while this model is not identified in general. See Paarsch (1992) and Février, Preget and

Visser (2004) for parametric estimation of common value auction models. See Laffont and Vuong (1996)

and Li, Perrigne and Vuong (2000) for the nonidentification of the common value model.
11See the previous examples, in which the consumer needs to pay to get access to the regulated good.
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model is singular. We thus introduce an additional term representing unobserved hetero-

geneity, which can be added equivalently to the effort disutility function or the transfer

function. An additional advantage of such an error term is that it can be used to assess

the explanatory power of the Laffont and Tirole’s model. The econometric model is then

based on five equations, which are the demand, the cost, the generalized Ramsey pricing,

the optimal effort level and the transfer.12

The econometric model allows for exogenous variables capturing observed firm, reg-

ulator, and/or market heterogeneity, which can affect all the functions and distributions

in the model. We first show that the model is nonparametrically identified given the cost

of public funds under a multiplicative decomposition of the cost function into a base cost

function and an inefficiency cost function. The latter gives the firm’s cost inefficiency

level and is assumed to be the identity function in this basic model. The firm’s type is

assumed to be conditionally independent of the three other random shocks in the models,

while a natural location-scale normalization is imposed.13 Nonparametric identification

then relies on the bijective mapping between the price and the firm’s type. Using the

price distribution allows us to identify the optimal effort level as well as the firm’s type.

The analogy with the auction model becomes clear. In particular, the bidder’s private

value and his bid in an auction model are equivalent to the firm’s type and the price in

a regulatory contract. Guerre, Perrigne and Vuong (2000) recover the bidder’s private

value from the equilibrium first-order condition, which relates monotonically the private

value to the bid and the bid distribution. A similar idea is exploited here.

Next, we address the nonparametric identification of the cost of public funds, which

requires additional assumption(s). We then consider a model in which the cost inefficiency

function is of general known form. The identification follows a similar argument. On the

other hand, when considering the case of an unknown cost inefficiency function, we show

that there exists an observationally equivalent model, where the cost inefficiency function

12The pricing rule derived from the model does not correspond exactly to the well known Ramsey

pricing rule because of the stochastic demand. We then call it the generalized Ramsey pricing. The

generalized Ramsey pricing and the optimal effort level equations are directly derived from the first-order

conditions of the regulator’s maximization problem.
13Such a normalization is necessary as a linear transformation of the firm’s type will lead to an obser-

vationally equivalent model causing the nonidentification of the model.
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is the identity function. Thus the general model is not identified and without loss of

explanatory power the cost inefficiency function can be taken to be the identity function.

Our paper represents an important step towards the development of the econometrics

of contract models and more generally of models with incomplete information. First,

we show that the Laffont and Tirole (1986) model is nonparametrically identified from

observables. The complexity of the model and its technical difficulties raise numerous

challenges as noted above. Second, the nonparametric nature of our identification result

leads to an estimation method that is robust to misspecification. In contrast, Perrigne

(2002) develops a parametric estimation procedure based on a parametric identification of

the model.14 Our paper is also parsimonious in error terms in contrast to Wolak (1994).

While considering the estimation of the Baron and Myerson (1982) model, Wolak (1994)

proposes a fully parametric estimation method adding measurement error terms to the

first-order conditions of the regulator’s maximization problem in addition to the demand

and cost random shocks and the firm’s type. Third, our results offer a new approach

to the estimation of cost efficiency that incorporates explicitly the effects of information

asymmetry through adverse selection and moral hazard.15 In particular, Lemma 4 and

the following discussion indicate that estimation of a cost frontier as performed in classical

production frontier analyses (see, e.g. Gagnepain and Ivaldi (2002)) does not exploit all

the information in the theoretical model and may produce a biased estimate of the base

cost function. Lastly, given the many ingredients included in the model, our identification

result can be extended to other models with incomplete information. For instance, a

contract model with adverse selection is a simplified version as the effort disutility and

the cost of public funds are not part of the model structure. As such, nonlinear pricing and

many contractual data besides regulatory contract data can be analyzed structurally. See

14This paper discusses some technical difficulties addressed here such as the generalization of the

Laffont and Tirole’s model, the necessary normalization of the cost inefficiency index and the conditional

independence of the firm’s type and the demand shock among others. It deals with three observed

endogenous variables (demand, cost, price) determined by three random variables (demand and cost

random shocks and firm’s type). Thus, the additional term of unobserved heterogeneity is not necessary.

In particular, this paper does not use information on the transfer, though it also discusses the need of

transfer information to identify possibly semiparametrically the model.
15See Park and Simar (1994) and Park, Sickles and Simar (1998) for a survey of the classical literature

on production frontier models with recent developments in the semiparametric estimation of these models.
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Miravete (2002) for a recent contribution to the empirical analysis of nonlinear pricing.

The paper is organized as follows. Section 2 presents a generalization of the Laffont

and Tirole (1986) model with a stochastic demand for a private good as well as its im-

plementation through linear contracts and the verification of the second-order conditions.

Section 3 addresses the nonparametric identification of the basic model, in which the cost

inefficiency function is the identity function. It includes the derivation of the economet-

ric model, while considering the identification of the structure for a given cost of public

funds. Section 4 addresses the nonparametric identification of the cost of public funds

under additional assumptions. Section 5 considers the identification of the general model,

in which the cost inefficiency function can take any form, known or unknown. Section 6

concludes. Two appendices provide the proofs of our results.

2 The Model

In this section we extend the Laffont and Tirole (1986) model of incentive regulation of

a monopolist producing a private good by allowing for general random demand and cost

functions.16 The demand for the private good and the cost for producing it are

y = y(p, εd) ≥ 0

c = c(y, θ − e, εc) ≥ 0,

where y is the quantity of private good, c is the corresponding cost, p is the price per

unit of private good, θ represents the firm’s (inefficiency) type, e is the level of effort

exerted by the firm, and (εd, εc) are the demand and cost random shocks, respectively.

As usual, θ and e are private information to the firm, where θ is the (scalar) adverse

selection parameter known to be distributed as F (·) with density f(·) > 0 on its support

[θ, θ], θ < θ. The random shocks (εd, εc) are known to be jointly distributed as G(·, ·)
independently from θ.17

16This section owes much to Jean-Jacques Laffont’s comments.
17Note that εc is assumed independent of θ in Laffont and Tirole (1986), while εd is void because the

demand y is fixed. Given the timing of the contract, this assumption is natural. Laffont and Tirole (1986)

also consider a constant marginal cost function, namely c = (θ− e)y+ εc, while Laffont and Tirole (1993,

p.171) consider the cost function c = H(θ− e)co(y) + εc, which is, except for the additive separability of
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The regulator offers a price schedule p(θ̃) ≥ 0 based on the firms’ announcement θ̃

about its true type θ as well as a net transfer t = t(θ̃, c) based on θ̃ and the observed realized

firm’s cost c. The realized cost is paid by the regulator so that t is the net transfer. The

random shocks (εd, εc) are realized ex post, i.e. after contractual arrangements have been

made between the regulator and the monopolist. Consequently, the contract is designed

ex ante based on expected values with respect to (εd, εc). Upon accepting the contract,

the firm must satisfy the realized demand y = y[p(θ̃), εd] at the price p(θ̃) corresponding

to its announcement θ̃. The regulator and the firm are both risk neutral.

Throughout, we assume that all functions are at least twice continuously differentiable

and that integration and differentiation can be interchanged. Whenever a(·) is a function

of more than one variable, we denote its derivative with respect to the kth argument

by ak(·). All discussions of assumptions and second-order conditions are relegated to

subsection 2.5.

2.1. The Firm’s Problem

Given the price p(·) and transfer t(·, ·) functions chosen by the regulator, the realized

utility for the firm with type θ when it announces θ̃ and exerts effort e is

U(θ̃, θ, e, εd, εc) = t
(
θ̃, c(y[p(θ̃), εd], θ − e, εc)

)
− ψ(e), (1)

where ψ(e) ≥ 0 is the firm’s cost for exerting effort e. Because (εd, εc) is ex ante unknown

and the firm is risk neutral, the firm’s optimization problem is

(F ) max
θ̃,e

E[U(θ̃, θ, e, εd, εc) | θ] =
∫
U(θ̃, θ, e, εd, εc)dG(εd, εc),

where the independence between θ and (εd, εc) is used and E[·] denotes the expectation

with respect to (εd, εc).

The firm’s optimization problem can be solved in two steps. In the first step, the effort

level e is chosen optimally given the announcement θ̃ and the true type θ:

(FE) max
e

E[U(θ̃, θ, e, εd, εc) | θ] =
∫
U(θ̃, θ, e, εd, εc)dG(εd, εc).

This gives e = e(θ̃, θ), which solves the first-order condition (FOC):

0 = E[U3(θ̃, θ, e, εd, εc) | θ] =
∫
U3(θ̃, θ, e, εd, εc)dG(εd, εc), (2)

εc, the cost function we consider starting from Section 2.4.
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i.e. using (1), e = e(θ̃, θ) solves

∫
t2
(
θ̃, c(y[p(θ̃), εd], θ − e, εc)

)
c2(y[p(θ̃), εd], θ − e, εc) dG(εd, εc) = −ψ′(e). (3)

Denote the corresponding expected utility by

U(θ̃, θ) ≡ E[U(θ̃, θ, e(θ̃, θ), εd, εc) | θ] =
∫
U(θ̃, θ, e(θ̃, θ), εd, εc)dG(εd, εc). (4)

In the second step, the firm solves

max
θ̃
U(θ̃, θ)

giving θ̃ = θ̃(θ), which solves the FOC: U1(θ̃, θ) = 0.

2.2. Incentive Constraint

We now consider the Incentive Constraint (IC) arising from the firm telling the truth θ,

i.e. θ = θ̃(θ) for any θ ∈ [θ, θ]. Thus, we must have U1(θ, θ) = 0 for any θ. Equivalently,

denoting U(θ) ≡ U(θ, θ) and e(θ) ≡ e(θ, θ), and using U ′(θ) = U1(θ, θ) + U2(θ, θ) and

then (4), we obtain

U ′(θ) = U2(θ, θ)

=
∫
U2(θ, θ, e(θ), εd, εc)dG(εd, εc) + e2(θ, θ)

∫
U3(θ, θ, e(θ), εd, εc)dG(εd, εc)

=
∫
U2(θ, θ, e(θ), εd, εc)dG(εd, εc)

=
∫
t2
(
θ, c(y[p(θ), εd], θ − e, εc)

)
c2(y[p(θ), εd], θ − e, εc) dG(εd, εc),

where the third equality follows from (2) since e(θ) = e(θ, θ), and the fourth equality

follows from (1). Hence, using (3) at θ̃ = θ and e = e(θ) = e(θ, θ) gives the incentive

constraint

U ′(θ) = −ψ′(e), (5)

where

U(θ) =
∫
t
(
θ, c(y(p(θ), εd), θ − e(θ), εc)

)
dG(εd, εc) − ψ(e(θ)) (6)

e(θ) = arg max
e

∫
t
(
θ, c(y(p(θ), εd), θ − e, εc)

)
dG(εd, εc) − ψ(e). (7)
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2.3. The Regulator’s Problem

Not knowing (θ, εd, εc), the regulator chooses [p(·), t(·, ·)], i.e. the price schedule and the

transfer function. Suppose that [p(·), t(·, ·)] is such that (i) it is truth telling (so that

the incentive constraint (5) is satisfied and the firm exerts the optimal level of effort

e = e(θ) = e(θ, θ)) and (ii) the monopolist participates for any level of its type θ. Given

that the regulated good is private, the ex post social welfare when θ is the firm’s true type

is

SW (θ, εd, εc) =
∫ ∞

p(θ)
y(v, εd)dv + (1 + λ)

{
p(θ)y(p(θ), εd)

−t(θ, c(y(p(θ), εd), θ − e(θ), εc)) − c(y(p(θ), εd), θ − e(θ), εc)
}

+t(θ, c(y(p(θ), εd), θ − e(θ), εc)
)
− ψ(e(θ)),

where λ > 0 is the shadow cost of public funds. Thus, using the independence of θ and

(εd, εc), the expected social welfare is
∫
SW (θ, εd, εc)dG(εd, εc)dF (θ) =

∫ θ

θ

{ ∫ [ ∫ ∞

p(θ)
y(v, εd)dv + (1 + λ)

(
p(θ)y(p(θ), εd)

−ψ(e(θ)) − c(y(p(θ), εd), θ − e(θ), εc)
)]
dG(εd, εc) − λU(θ)

}
dF (θ), (8)

where we have used (6). Therefore, the regulator’s optimization problem is

(P ) max
[p(·),t(·,·),e(·),U(·)]

∫
SW (θ, εd, εc)dG(εd, εc)dF (θ),

subject to the incentive and the participation constraints, i.e.

U ′(θ) = −ψ′(e(θ)) (9)

U(θ) ≥ 0, (10)

for all θ ∈ [θ, θ], where U(·) and e(·) are given by (6) and (7). Note that, without loss

of generality, the control functions in the optimization problem (P) include e(·) and U(·)
since these functions are determined by p(·) and t(·, ·) through (6) and (7). In view of (9),

note also that U ′(θ) < 0 under the condition that ψ′(·) > 0, which is assumed hereafter.

Hence, the participation constraint (10) can be written equivalently as U(θ) ≥ 0 or

U(θ) = 0 (11)

10



because the expected social welfare (8) decreases with U(·).
We now solve this optimization problem. First, we note that the objective function

(8) depends on the transfer function t(·, ·) only indirectly through U(θ) and e(θ), which

are given by (6) and (7). This suggests to consider the simpler optimization problem

(P ′) max
[p(·),e(·),U(·)]

∫
SW (θ, εd, εc)dG(εd, εc)dF (θ),

subject to (9) and (11) only. In subsection 2.4 on implementation, we will verify that there

exists a transfer function t∗(·, ·) satisfying (6) and (7) for the solution [p∗(·), e∗(·), U∗(·)]
of the optimization problem (P’).

We denote the expected demand at price p by y(p) ≡ E[y(p, εd)] =
∫
y(p, εd)dG(εd)

where G(·) is the marginal distribution of εd. Let E[a(εd, εc, θ)] =
∫
a(εd, εc, θ) dG(εd, εc)

denote the expectation of a function a(·, ·, ·) with respect to (εd, εc) for fixed θ, or condi-

tional upon θ given the independence of θ and (εd, εc). We have

Proposition 1: The functions p∗(·) and e∗(·) that solve the FOC of the optimization

problem (P’) satisfy

p− m̃c(p)

p
= µ

1

η̃(p)
(12)

ψ′(e) = cse(p) − µ
F (θ)

f(θ)
ψ′′(e), (13)

where p = p∗(θ), e = e∗(θ), µ = λ/(1 + λ) and

m̃c(p) =
E
[
c1(y(p, εd), θ − e, εc)y1(p, εd)

]

E[y1(p, εd)]

η̃(p) = −py
′(p)

y(p)

cse(p) = E
[
c2(y(p, εd), θ − e, εc)

]
.

Note that m̃c(p) differs from the expected marginal cost mc(p) ≡ E[c1(y(p, εd), θ −
e, εc)] for producing one additional unit to satisfy the random demand y(p, εd) at price

p. Moreover, η̃(p) is the elasticity of the expected demand y(p), which differs from the

expected elasticity of demand η(p) ≡ E[−py1(p, εd)/y(p, εd)]. On the other hand, cse(p) is
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the expected cost saving for one additional unit of effort at the random demand y(p, εd).

Thus, (12) can be viewed as a generalized Ramsey pricing, while (13) is interpreted as

usual with a downward distortion in effort due to the second term arising from asymmetric

information. In particular, when θ = θ so that F (θ) = 0, (13) gives ψ′(e) = cse(p) and the

first-best is achieved for the most “efficient” firm θ as usual. Moreover, when the demand

is not random, i.e. εd has a degenerate distribution so that y(p, εd) = y(p), we have

m̃c(p) = mc(p) and η̃(p) = η(p) so that (12) and (13) reduce to the FOC in Laffont and

Tirole (1986) with a constant marginal cost function an additive random shock (θ−e)y+εc
considered there.

Lastly, the optimization problem (P’) is complete by determining the optimal firm’s

rent U∗(θ). The latter is obtained by integrating out the incentive constraint (9) subject

to the participation constraint (11). This gives

U∗(θ) =
∫ θ

θ
ψ′[e∗(β)] dβ, (14)

which is strictly positive whenever θ < θ since ψ′(·) > 0.

2.4. Implementation

Hereafter, we assume that the cost function is multiplicatively separable in θ − e (see

Laffont and Tirole (1993, p.171).

Assumption A1: The random cost function is of the form

c(y, θ − e, εc) = H(θ − e) co(y, εc), (15)

for some functions H(·) > 0 and co(·, ·) ≥ 0.

The function co(·, ·) can be viewed as the (random) base cost function, while H(·) can

be interpreted as the cost inefficiency function determining the cost inefficiency level

H ≡ H(θ − e) of the firm. Let the expected base cost for satisfying the random demand

y(p, εd) at price p be co(p) ≡ Eε[co(y(p, εd), εc)
]
.

Proposition 2: Given assumption A1, consider the following transfer function

t∗(θ̃, c) = A(θ̃) − ψ′[e∗(θ̃)]

H ′[θ̃ − e∗(θ̃)]

{
c

co[p∗(θ̃)]
−H[θ̃ − e∗(θ̃)]

}
, (16)
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where e∗(·) and p∗(·) are the optimal price and effort functions obtained from (P’), θ̃ is

the firm’s announcement, c is the firm’s realized cost, and

A(θ̃) = ψ[e∗(θ̃)] +
∫ θ

θ̃
ψ′[e∗(β)] dβ. (17)

Thus, given the price schedule p∗(·) and the transfer function t∗(·, ·), announcing its true

type θ and exerting the optimal effort e∗(θ) satisfy the FOC of the firm’s problem (F).

Moreover, [p∗(·), t∗(·, ·), e∗(·), U∗(·)] solves the FOC of problem (P).

In view of (14), A(θ̃) = ψ[e∗(θ̃)] + U∗(θ̃). Hence, (16) shows that the transfer is equal

to the cost of effort plus the firm’s (expected) rent minus a fraction of the cost overrun,

where the latter is the discrepancy between the realized cost and the expected cost. In

particular, (16) can be viewed as a menu of linear cost-reimbursement rules in realized

cost c with slopes and intercepts depending on the firm’s announcement θ̃. Moreover,

when θ = θ, (13) and (15) imply that ψ′[e∗(θ)] = H ′[θ − e∗(θ)]co[p
∗(θ)] so that the slope

coefficient in (16) equals -1 when θ̃ = θ. That is, recalling that t is the net transfer, the

most efficient firm, which announces its true type θ, chooses a fixed-price contract.

2.5. Second-Order Conditions

Up to now, we have considered only the first-order conditions (FOC). In this subsection

we verify that our optimal solution corresponds to a global maximum. In particular, it is

fundamental to verify that announcing the true type θ holds not only locally but globally.

As usual, we do this ex post by verifying that our solution satisfies the second-order

conditions (SOC) for a local maximum, and that these SOC extend globally.

First, we make explicit assumptions on the demand, cost and effort functions. We

follow Laffont and Tirole (1986) and adapt their assumptions to the case of stochastic

demand and cost functions.18 Let V (p, εd) be the social value of producing the quantity

demanded at price p given demand shock εd

V (p, εd) =
∫ ∞

p
y(v, εd)dv + (1 + λ)py(p, εd),

i.e., V (p, εd) is the sum of the net consumer surplus and the revenue for the regulator

computed at the shadow cost of public funds (see Laffont and Tirole (1993, p.132) when

18These assumptions are sufficient but not necessary. In Section 5, we provide necessary and sufficient

assumptions for the second-order conditions and implementation to hold.
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the good is private). Let the expected social value be

V (p) ≡
∫
V (p, εd)dG(εd) =

∫ ∞

p
y(v)dv + (1 + λ)py(p) > 0,

where we have used the definition of y(p).

Assumption A2: The demand, cost and effort functions satisfy:

(i) V
′
(·) < 0, V

′′
(·) < 0,

(ii) co(·) > 0, c′o(·) < 0, c′′o(·) ≥ 0,

(iii) H ′(·) > 0, H ′′(·) ≥ 0,

(iv) ψ′(·) > 0, ψ′′(·) > 0, ψ′′′(·) ≥ 0.

Assumption A2-(i) is standard (see Laffont and Tirole (1986, 1993)). Since

V
′
(p) = λy(p) + (1 + λ)py′(p) = (1 + λ)y(p)

(
λ

1 + λ
− η̃(p)

)

V
′′
(p) = (1 + 2λ)y′(p) + (1 + λ)py′′(p) = (1 + λ)py′(p)

(
1 + 2λ

(1 + λ)p
+
y′′(p)

y′(p)

)
,

it follows that assumption A2-(i) is satisfied if the expected demand is not too inelastic,

i.e. η̃(p) > λ/(1+λ), and if the expected demand is not too convex, i.e. −py′′(p)/y′(p) <
(1+2λ)/(1+λ) when y(p) > 0 and y′(p) < 0 as expected. Regarding assumption A2-(ii),

the definition of the expected base cost co(p) = Eε[co(y(p, εd), εc)] gives

c′o(p) = Eε

[
co,1(y(p, εd), εc)y1(p, εd)

]

c′′o(p) = Eε

[
co,11(y(p, εd), εc)y

2
1(p, εd)

]
+ Eε

[
co,1(y(p, εd), εc)y11(p, εd)

]
.

Thus, assumption A2-(ii) is satisfied if co,1(·, ·) > 0, co,11(·, ·) ≥ 0, y1(·, ·) < 0 and y11(·, ·) ≥
0, i.e. if the base cost function is strictly increasing and convex in quantity and demand

is strictly decreasing and convex in price. The latter conditions are satisfied in general.

Assumption A2-(iii,iv) follows Laffont and Tirole (1993, p. 171). In particular, the cost

inefficiency level is strictly increasing and convex in θ − e, while the effort cost is strictly

increasing and strictly convex in e.

We begin with the firm’s optimization problem (F). In particular, for any (θ̃, θ) consider

the firm’s optimization problem (FE) with respect to e.

Lemma 1: Suppose that the transfer function t(·, ·) is weakly decreasing and concave in

realized cost c. Given assumptions A1–A2, the effort e(θ̃, θ), which solves the FOC (3),
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is uniquely defined and corresponds to a global maximum of the problem (FE). Moreover,

0 ≤ e2(θ, θ) < 1.

Note that t∗(·, ·) is weakly decreasing and concave in realized cost c, as it is linear in c

with slope −ψ′[e∗(θ̃)]/{H ′[θ̃ − e∗(θ̃)]co[p
∗(θ̃)]} < 0. Thus, Lemma 1 applies.

Next, we turn to the incentive constraint (5). The local SOC for θ̃ = θ to be a local

maximum is U11(θ, θ) ≤ 0, where U(θ̃, θ) is given by (4). As is well known, using the

FOC: U1(θ, θ) = 0 which must hold for any θ, this SOC is equivalent to U12(θ, θ) ≥ 0.

But differentiating (4) and using (1) give

U2(θ̃, θ) = Eε

[
t2(·)c2(·)[1 − e2(θ̃, θ)]

]
− ψ′[e(θ̃, θ)]e2(θ̃, θ) = −ψ′[e(θ̃, θ)],

where the second equality follows from (3) where e = e(θ̃, θ). Hence

U12(θ̃, θ) = −ψ′′[e(θ̃, θ)]e1(θ̃, θ). (18)

Because ψ′′(·) > 0, the local SOC: U12(θ, θ) ≥ 0 is equivalent to e1(θ, θ) ≤ 0, i.e.

e′(θ) ≤ e2(θ, θ), (19)

since e(θ) = e(θ, θ) implies e′(θ) = e1(θ, θ) + e2(θ, θ).

When the transfer function t(·, ·) is weakly decreasing and concave in realized cost, as

is the case for the linearly decreasing transfer t∗(·, ·) given by (16), Lemma 1 implies that

a sufficient condition for the local SOC (19) to hold is that e′(·) ≤ 0. The next lemma

shows that e∗′(·) < 0 under the following assumption.

Assumption A3: For any θ ∈ [θ, θ]

(i) ψ′′[e∗(θ)]V
′′
[p∗(θ)] + (1 + λ)

{
H ′[θ − e∗(θ)]c′o[p

∗(θ)]
}2
< 0

(ii) [(1 + λ)/λ]H ′′[θ − e∗(θ)]co[p
∗(θ)]/ψ′′[e∗(θ)] ≤ d[F (θ)/f(θ)]/dθ.

Condition A3-(i) is reminiscent of assumption 1-(iii) in Laffont and Tirole (1986) for the

case where c(y, θ− e, εc) = (θ− e)y+ εc and y is nonrandom. Condition A3-(ii) is slightly

stronger than the usual condition that F (·) is log-concave as in Laffont and Tirole (1993,

assumption 1.2). It actually reduces to it when H(θ − e) = θ − e so that H ′′(·) = 0.

Lemma 2: Given assumptions A1–A3 and the transfer t∗(·, ·) and price p∗(·) functions,

the local SOC (19) for truth telling is satisfied as e∗′(·) < 0. Moreover, p∗′(·) > 0.
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In particular, effort e∗(·) is strictly decreasing in firm’s type θ, while price p∗(·) is strictly

increasing in firm’s type. These agree with the fact that the cost inefficiency level H∗ ≡
H[θ − e∗(θ)] of the firm is strictly increasing with its type θ because θ − e∗(θ) is strictly

increasing in θ and H ′(·) > 0.

It remains to show that θ̃ = θ provides a global maximum of the firm’s utility (4)

under the optimal transfer (16). This is accomplished by the next result.

Proposition 3: Given assumptions A1–A3 and the transfer t∗(·, ·) and price p∗(·) func-

tions, truth telling provides the global maximum of the expected utility function U(θ̃, θ)

given in (4). Moreover, the expected transfer t ≡ Eε

[
t∗
(
θ, c[y(p∗(θ), εd), θ− e∗(θ), εc]

)]
for

a firm with type θ announcing its true type θ and thus exerting the optimal effort e∗(θ) is

strictly decreasing and convex in the firm’s cost inefficiency level H∗.

In particular, the second part of Proposition 3 ensures that the regulator can use a menu

of linear cost-reimbursement rules, as was proposed in subsection 2.4 on implementation.

Moreover, because the firm’s cost inefficiency level H∗ is strictly increasing in firm’s type,

the expected transfer is strictly decreasing in firm’s type, as expected.

3 Identification of the Basic Model Given λ

The structural approach relies on the maintained assumption that the regulator offers the

optimal price schedule p∗(·) and optimal transfer function t∗(·, ·) to the monopolist who

then reveals its true type θ. The incentive regulation model of Section 2 then determines

the price p = p∗(θ) per unit of private good, the effort e = e∗(θ) exerted by the monopolist,

the quantity y = y(p, εd) of private good given the realized demand shock εd, the cost

c = c(y, θ − e, εc) for producing y given the realized cost shock εc, as well as the (net)

transfer t = t∗(θ, c) to the firm. Thus, the structural approach leads to a closely related

econometric model explaining (y, c, p, e, t) from the random variables (θ, εd, εc).

In this section we detail the specification of the econometric model for the observables

taking into account possible observed and unobserved heterogeneity. We then study

the identification of the structural elements of the model, which are the demand, base

cost, cost efficiency and effort disutility functions, the distribution of the firm’s type, the

distribution of the demand and cost shocks, as well as the shadow cost of public funds from
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the distribution of the observables. Throughout, assumptions A1–A3 are maintained.

3.1. The Structural Econometric Model

A number of complications arises. First, the effort exerted by the monopolist is unobserved

as are the firm’s type θ and the demand and cost shocks (εd, εc). Hereafter, we thus

assume that only (Y, C, P, T ) are observed, where we use capital letters to distinguish

random variables from their realizations.

Second, the demand, cost and effort disutility functions may depend on a vector of

exogenous variables Z ∈ IRd, where Z includes some characteristics of the firm, regulator

and/or market. To allow for such dependencies, the demand, cost and effort disutility

functions are defined hereafter as y(p, z, εd), H(θ−e, z)co(y, z, εc) and ψ(e, z) when Z = z.

Similarly, the firm’s type θ, the demand shock εd and the cost shock εc may depend on

Z. This is accomplished by introducing the conditional distributions F (·|z) and G(·, ·|z)
for θ and (εd, εc) given Z = z. Hereafter, we let [θ(z), θ(z)] denote the support of F (·|z).
Moreover, the cost of public funds λ may depend on z, i.e. λ = λ(z) for some positive

function λ(·).19 From such dependencies on z, it follows that the optimal price, transfer

and effort functions are of the form p∗(·, z), t∗(·, ·, z) and e∗(·, z). The correspondingly

revised assumptions A1–A3 are then assumed to hold for every value of Z. Hereafter, we

let Z denote the support of the distribution of Z.

Third, for every value of Z, the four observed endogenous variables (Y, C, P, T ) are

determined by the three unobserved random variables (θ, εd, εc). Thus, the econometric

model is singular. In particular, the net transfer T is a deterministic function of (P,C, Z).

Because P = p∗(θ, Z), which is strictly increasing in its first argument by Lemma 2, then

T = t∗(θ, C, Z) = t∗[θ∗(P, Z), C, Z], where θ∗(·, Z) is the inverse of p∗(·, Z). Hence, if Z is

observed together with (Y, C, P, T ), in which case Z represents the observed heterogene-

ity, the structural model will be immediately rejected as soon as the observed values of

(C, P, T, Z) do not lie perfectly on the surface T = t∗[θ∗(P, Z), C, Z]. To circumvent such

a difficulty, it is necessary to introduce another source of randomness.

19Clearly, not all the variables in Z may affect these functions and distributions. For instance, some

demand shifters may affect only the demand. The cost function may depend on some firm’s specific

characteristics, while the cost of public funds may depend on economic activity such as in Perrigne

(2002). Though possibly helpful, as shown in Guerre, Perrigne and Vuong (2006) for risk aversion in

auction models, exclusion restrictions are not exploited here to achieve nonparametric identification.
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There are two simple ways to do so. A first method, which is compatible with the

structural approach, is to assume that some heterogeneity entering the effort disutility

function but not the demand and cost functions is known to the regulator and the firm

but unobserved by the econometrician. This is reasonable as the determinants of the

effort disutility function are likely to be less known than the determinants of the demand

and cost functions. Assuming that such unobserved heterogeneity in the effort disutility

function can be summarized by an additive term εt so that the effort disutility function

is now ψ(·, z) + εt instead of ψ(·, z), it can be seen from (16) and (17) that the transfer

T = t∗(θ, C, Z) will include εt as an additive term. Alternatively, a second method for

introducing another source of randomness, which is less structural but retains the content

of the theoretical model of Section 2 is to consider that the observed transfer T differs

from the optimal transfer T ∗ = t∗(θ, C, Z) by an ex post additive random term εt. Such

a random term εt may arise from measuring T ∗ with error, as data on transfers are

likely to be imprecise. The random term εt may also represent extra transfers from the

regulator to the firm that do not rely on cost efficiency considerations. In particular, the

second approach is useful when one believes that the observed transfer is not equal to the

optimal transfer. In this case, the Laffont–Tirole (1986) model can be viewed as providing

a determinant of the observed transfer, while εt can then be used to assess deviations from

the optimal transfer. Both approaches lead to the same econometric model.

Collecting the preceding remarks, rearranging (12) and (13), where m̃c(P ) and cse(P )

are replaced by [H(θ− e, Z)c′o(P, Z)]/y′(P, Z) and H ′(θ− e, Z)co(P, Z), respectively, and

combining (16) and (17) evaluated at θ̃ = θ, the structural econometric model for the

endogenous variables (Y, C, P, T ) and the unobserved effort e given the exogenous variables

Z is defined, under assumptions A1–A3, by the nonlinear nonparametric simultaneous

equation model generally implicit in P with nonadditive error terms (θ, εd, εc)

Y = y(P, Z, εd) (20)

C = H(θ − e, Z)co(Y, Z, εc) (21)

Py′(P, Z) + µy(P, Z) = H(θ − e, Z)c′o(P, Z) (22)

ψ′(e, Z) + µ
F (θ|Z)

f(θ|Z)
ψ′′(e, Z) = H ′(θ − e, Z)co(P, Z) (23)

T = ψ(e, Z) +
∫ θ(Z)

θ
ψ′[e∗(θ̃, Z), Z]dθ̃
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− ψ′(e, Z)

H ′(θ−e, Z)

{
C

co(P, Z)
−H(θ−e, Z)

}
+εt, (24)

where µ = µ(Z), P = p∗(θ, Z) and e = e∗(θ, Z) solve (22)-(23), and a prime denotes

derivation with respect to the first argument of a function. Following Section 2, y(p, z)

and co(p, z) in (21)–(24) are, conditional upon Z = z, the expected demand at price p

and the expected base cost for producing the random quantity y(p, εd) at price p, i.e.

y(p, z) =
∫
y(p, z, εd)dG(εd|z) (25)

co(p, z) =
∫
co[y(p, z, εd), z, εc]dG(εd, εc|z). (26)

To complete the specification of the econometric model, we make the following as-

sumption on the random elements (θ, εd, εc, εt).
20

Assumption B1: θ is independent of (εd, εc, εt) conditional upon Z with E[εt|Z] = 0.21

The condition E[εt|Z] = 0 is a normalization. When εt arises from some heterogeneity in

the effort disutility function that is unobserved by the econometrician but known by the

regulator and the firm, then (εd, εc) must be independent of θ given (Z, εt) for the theo-

retical model of Section 2 to apply. Assumption B1 then holds under the normalization

E[εt|Z] = 0 if εt and θ are independent conditional upon Z, i.e. if the firm’s type does

not depend on the unobserved heterogeneity conditional on the observed heterogeneity

Z. Alternatively, when εt is interpreted as a random term directly added to the optimal

transfer due to measurement errors and/or extra cost-unrelated transfers, it is reasonable

to assume that εt is independent of θ conditional upon (Z, εd, εc). Because (εd, εc) is inde-

pendent of θ conditional upon Z for the theoretical model of Section 2 to apply, it follows

that θ is independent of (εd, εc, εt) conditional upon Z and hence that assumption B1 is

satisfied under the normalization E[εt|Z] = 0.

To summarize, the observables are (Y, C, P, T, Z), where the endogenous variables

(Y, C, P, T ) are determined by (20)–(24), while (e, θ, εd, εc, εt) are unobserved. The struc-

20While estimating the Baron and Myerson (1982) model, Wolak (1994) introduces socalled additive

measurement error terms in the FOC of the regulator’s maximization problem, i.e. in (22) and (23). In

contrast, our error terms arise naturally from the model following the structural approach.
21A weaker requirement than assumption B1 is that θ is independent of (εd, εc) conditional upon Z,

and E[εt|θ, Z] = 0 for every value z of Z. Only the condition E[εt|θ, Z] = 0 is used in establishing (B.6)

in Appendix B. For simplicity, we consider assumption B1.
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tural elements of the model are the cost-of-public-funds function λ(·), the demand function

y(·, ·, ·), the base cost function co(·, ·, ·) with its cost inefficiency function H(·, ·), the ef-

fort disutility function ψ(·, ·), the conditional type distribution F (·|·) given Z, and the

joint distribution G(·, ·, ·|·) of the random terms (εd, εc, εt) conditional upon Z. In short,

the structure of the model is given by the vector of seven functions [y, co, H, ψ, F,G, λ].

The identification problem is to assess whether these structural elements can be recov-

ered uniquely from the conditional distribution of (Y, C, P, T ) given Z. For definitions

of identification in parametric and nonparametric contexts, see e.g. Koopmans (1949),

Roehrig (1988) and Prakasa Rao (1992). In subsections 3.2–3.4 we study such a problem

for the simpler case where the cost inefficiency function H(·, z) is the identity function so

that H(θ− e, z) and H ′(θ− e, z) are replaced by (θ− e) and 1, respectively, in (21)–(24).

The resulting model is called the basic model. The more general model with H(·) either

known or unknown is then studied in Section 5.

3.2. Identification of ψ(·, ·) and F (·|·) Given λ(·)
In this subsection we consider the basic model and study the nonparametric identification

of the effort disutility function ψ(·, ·) and the conditional distribution of firm’s type F (·|·)
assuming that the public funds cost function λ(·) is known. Identification of λ(·) is

addressed in Section 4.

To begin, a location-scale normalization is necessary despite the restriction that the

cost inefficiency function H(·, ·) is the identity function in the basic model. Intuitively,

this arises because θ, the base cost function c0(·, ·, ·) and the effort disutility function are

unknown. The next result formalizes the necessity of such a normalization.

Lemma 3: Let α = α(·) ≥ 0 and β = β(·) > 0 be some functions of Z. Consider the

two structures S ≡ [y, co, ψ, F,G, λ] and S̃ ≡ [ỹ, c̃o, ψ̃, F̃ , G̃, λ̃] in the basic model with

assumptions A1–A3 and B1, where ỹ(·, ·, ·) = y(·, ·, ·), c̃o(·, ·, ·) = co(·, ·, ·)/β, ψ̃(·, ·) =

ψ[(· − α)/β, ·], F̃ (·|·) = F [(· − α)/β|·], G̃(·, ·, ·|·) = G(·, ·, ·|·) and λ̃(·) = λ(·). Thus, the

structures S and S̃ lead to the same conditional distribution of (Y, C, P, T ) given Z, i.e.

the structures S and S̃ are observationally equivalent.

As the proof of Lemma 3 indicates, the observational equivalence between S and S̃
arises because the unknown firm’s type θ can be linearly transformed into a new type

θ̃ = α(z) + β(z)θ for each value z of Z. Several location-scale normalizations can be

20



employed. For instance, one can fix how two quantiles of θ vary with z. A natural choice

for these quantiles are θ(z) and θ(z), which correspond to the most and least efficient

firms, respectively, when Z = z. In this case, a location-scale normalization would be

to set θ(z) = θo(z) and θ(z) = θo(z), where θo(·) and θo(·) are known functions such

as the zero and one functions respectively. Such a normalization, however, is not very

convenient as we must have θ− e∗(θ, z) ≥ 0 for all (θ, z) in the basic model to ensure that

C = [θ − e∗(θ, Z)]co(Y, Z, εc) ≥ 0.

A more convenient location-scale normalization, which is used hereafter, is obtained

by imposing that the cost inefficiency of the most efficient firm is one and that the optimal

effort of the least efficient firm is 0, irrespective of the value of Z. Formally, we impose

Assumption B2: For every value z of Z

θ(z) − e∗[θ(z), z] = 1 and e∗[θ(z), z] = 0. (27)

Because the optimal effort e∗(θ, z) is strictly decreasing in θ, which implies that the cost

inefficiency θ−e∗(θ, z) is strictly increasing in θ, the normalization (27) actually determines

θ(z) and θ(z) as in the preceding direct location-scale normalization, though (27) fixes

those boundaries endogenously through the optimal effort function e∗(·, z). Moreover, the

normalization (27) is much convenient as it ensures that θ − e∗(θ, z) ≥ 1 so that the cost

frontier is defined by the most efficient firm, while e∗(θ, z) ≥ 0 for all firms, as desired. In

other words, from (21) with H(x, z) = x, it follows that co(y, z, εc) can be interpreted as

the cost frontier for producing y given (z, εc), while θ−e = [θ−e∗(θ, z)]/[θ(z)−e∗[θ(z), z]]
can be viewed as the relative cost inefficiency of a firm with type θ relative to the cost

efficient firm with type θ(z).

We now turn to the nonparametric identification of the effort disutility function ψ(·, ·)
and the conditional distribution of type F (·|·). We need a preliminary result, which

establishes that the expected demand function y(·, ·) and the expected base cost co(·, ·)
are identified nonparametrically from observations on quantity, price and costs given λ(·).
Moreover, it is shown that the relative cost inefficiency of the firm can be recovered

uniquely from the observables. Let [p(z), p(z)] denote the support of the conditional

distribution GP |Z(·|·) of P given Z.

Lemma 4: Suppose that λ(·) is known in the basic model with assumptions A1–A3 and
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B1-B2. Thus the expected demand function y(·, ·) and the expected base cost co(·, ·) are

uniquely determined by p(·) and the conditional means of (Y, C) given (P, Z) as

y(p, z) = E[Y |P =p, Z=z] (28)

co(p, z) = E[C|P =p(z), Z=z] exp

{∫ p

p(z)

p̃y′(p̃, z) + µy(p̃, z)

E[C|P = p̃, Z=z]
dp̃

}
, (29)

where µ = µ(z). Moreover, the relative cost inefficiency is

θ − e∗(θ, z) = ∆(p, z) ≡ E[C|P =p, Z=z]/co(p, z), (30)

where p = p∗(θ, z), and the function ∆(·, ·) satisfies ∆(·, ·) ≥ 1 and ∂∆(·, ·)/∂p > 0 .

It is interesting to note that the expected demand (25) can be obtained by a simple

regression of Y on (P, Z) despite the possible correlation between the demand shock εd

and Z in the demand equation (20) under assumption B1, as the latter only ensures

that εd is independent of θ and hence of P given Z.22 On the other hand, a simple

regression of C (or logC) on (P, Z), as used in the estimation of production/cost frontier

(see, e.g. Gagnepain and Ivaldi (2002)), does not estimate the expected base cost (26).23

Nevertheless, by exploiting the generalized Ramsey pricing rule (22), Lemma 4 indicates

that the expected base cost co(·, ·), which is the expected base cost for the most efficient

firm given the normalization (27), can be estimated from (29) by combining appropriately

the regressions of Y and C on (P, Z) with the knowledge of p(·). Moreover, (30) shows

that the relative cost inefficiency θ − e∗(θ, z) of a firm can be recovered from the firm’s

individual values (y, p, c, z) as the function ∆(·, ·) is known from the regression of C given

(P, Z) and the expected base cost co(·, ·).
22For instance, consider a demand that is additively separable in εd, i.e. Y = r(P,Z) + εd. Thus, the

regression of Y on (P,Z) recovers the expected demand y(p, z) at price p despite the possible correlation

between εd and Z. This is so because r(p, z) 6= y(p, z) = r(p, z) + E[εd|Z] = E[Y |P = p, Z = z].
23For instance, consider a typical cost specification of the form logC = log[co(Y, Z, εc)] + log(θ − e) =

s(Y, Z) + εc + log(θ− e), where log(θ− e) ≥ 0 in view of (27). The composite error term εc + log(θ− e) is

typically correlated with both Y = y(P,Z, εd) and Z under assumption B1. Regression, IV estimation,

and ML estimation of this model attempts to estimate the cost frontier s(y, z), which is different from

the expected base cost co(p, z) that is relevant in the FOC (22)-(23) of price and effort. See Perrigne and

Vuong (2007b).
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Using Lemma 4, the next result establishes the nonparametric identification of the

effort disutility function ψ(·, ·) and the conditional distribution of type F (·|·) from ob-

servations on quantity, price, cost and transfer given λ(·). To this end, we use an iden-

tification strategy in the spirit of Guerre, Perrigne and Vuong (2000). Specifically, we

exploit the bijective mapping between the price P and the firm’s type θ from Lemma

2, which shows that p∗
′
(θ) > 0. The parallel with auction models becomes clear. In

auction models, the bijective mapping between the bidder’s (unobserved) private value

and his optimal (observed) bid is used to rewrite the FOC of the bidder’s optimization

problem in terms of observables. Such an equation expresses the unobserved private value

in terms of the corresponding optimal bid, the bid distribution and density, from which

one can identify the private value distribution. A similar strategy is used here. In par-

ticular, because θ∗(P, Z) = θ, we are able to replace in (23) the ratio F (θ|Z)/f(θ|Z) by

[GP |Z(P |Z)/gP |Z(P |Z)] × (∂θ∗(P, Z)/∂p), where GP |Z(·|·) is the conditional distribution

of P given Z and gP |Z(·|·) its corresponding density. Using (23) and the identification

of ψ(·, ·) from (24), we derive an expression for θ as a function of the observed optimal

price, its distribution and density from which we identify the type distribution F (·|·) as

shown in the next proposition. In particular, the unobserved firm’s type θ can be re-

covered uniquely from the firm’s observed price P and characteristics Z once the various

unknown functions have been recovered from data on (Y, C, P, T, Z).

We define the functions

Γ(p, z) = −∂E[T |P =p, Z=z]/∂p

∂∆(p, z)/∂p
(31)

R(p, z) =
µ[GP |Z(p|z)/gP |Z(p|z)] × ∂Γ(p, z)/∂p × ∂∆(p, z)/∂p

Γ(p, z) − c0(p, z) + µ[GP |Z(p|z)/gP |Z(p|z)] × ∂Γ(p, z)/∂p
, (32)

for an arbitrary value (p, z). The functions Γ(·, ·) and R(·, ·) are known from the knowledge

of the joint distribution of (Y, C, P, T ) conditional upon Z in view of Lemma 4.24 As seen

in the proof, the functions Γ(·, ·) and R(·, ·) exploit the expected optimal transfer from

(24) and the FOC for optimal effort (23).

24In particular, Γ(·, ·) can be interpreted as the marginal decrease in the expected transfer T due to a

one-unit increase in relative inefficiency ∆. As (33) and (34) below show, Γ(p, z) is also the marginal cost

of effort, i.e. Γ(p, z) = ψ′(e, z), while R(p, z) is the marginal decrease in effort due to a one-unit increase

in price, i.e. R(p, z) = −e′(p, z).
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Proposition 4: Suppose that λ(·) is known in the basic model with assumptions A1–A3

and B1-B2. Thus the effort disutility function ψ(·, ·) is uniquely determined by p(·), p(·)
and the conditional means of (Y, C, T ) given (P, Z) as

ψ(e, z) = E[T |P =p(z), Z=z] +
∫ e

0
Γ[p∗(ẽ, z), z] dẽ, (33)

where Γ(·, ·) > 0, ∂Γ(·, ·)/∂p < 0, and p∗(·, z) is the inverse of the optimal effort function

e∗(·, z), which satisfies

e∗(p, z) =
∫ p(z)

p
R(p̃, z) dp̃, (34)

with ∂∆(·, ·)/∂p > R(·, ·) > 0. Moreover, the conditional means of (Y, C, T ) given (P, Z)

and the conditional distribution of P given Z uniquely determine the conditional distrib-

ution F (·|z) of type given Z = z as the distribution of

θ = θ∗(P, z) ≡ ∆(P, z) +
∫ p(z)

P
R(p̃, z) dp̃, (35)

where P is distributed as GP |Z(·|z), for every value z of Z.

In particular, while the minimal effort e∗[θ(z), z] = 0 by the normalization (27), (34)

implies that the maximal effort (exerted by the efficient firm with type θ(z)) is

e∗[θ(z), z] =
∫ p(z)

p(z)
R(p̃, z) dp̃ > 0. (36)

Similarly, the lower and upper bounds of the conditional distribution F (·|z) of type are

θ(z) = 1 +
∫ p(z)

p(z)
R(p̃, z) dp̃ > 1 (37)

θ(z) =
E[C|P =p(z), Z=z]

E[C|P =p(z), Z=z]
exp

{
−
∫ p(z)

p(z)

p̃y′(p̃, z) + µy(p̃, z)

E[C|P = p̃, Z=z]
dp̃

}
> θ(z), (38)

from (35) in view of (29)–(30) and ∆[p(z), z] = 1 from (27).

The key of Proposition 4 is that the observed price P is in bijection with the unobserved

type θ given Z = z. Thus, conditioning on (P, Z) is actually conditioning on (θ, Z). That

is, (35) can be viewed as the inverse of the optimal price schedule p∗(θ, z). A similar

remark applies to the firm’s effort e, which can be recovered similarly through (34) from

the firm’s observed value (p, z).
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3.3. Identification of y(·, ·, ·), co(·, ·, ·) and G(·, ·, ·|·) Given λ(·)
Lemma 3 establishes the identification of the expected demand and expected base cost

functions y(·, z) and co(·, z) for every price p ∈ [p(z), p(z)] and z ∈ Z. For counterfactual

exercises or policy evaluations, one may need to identify the remaining structural elements

of the model, which are the demand function y(·, ·, ·), the base cost function co(·, ·, ·) and

the conditional distribution G(·, ·, ·|·) of (εd, εc, εt) given Z. This is the purpose of the

present subsection, which still assumes that the public fund cost function λ(·) is known.

Unlike the random term εt, which enters additively in the transfer equation (24), the

demand shock εd and cost shock εc do not enter additively in the demand equation (20)

and cost equation (21). The problem is reminiscent of Matzkin (2003) who argues that

the structural specification of a random demand or a cost function seldom leads to an

additive random term as several references given in that paper indicate. When the random

term does not enter additively into the relationship between the endogenous variable and

the exogenous variables, Matzkin (2003) shows that this relationship is nonidentified

nonparametrically and that some normalization is needed to identify nonparametrically

the function and the distribution of the error term.25

Our problem differs from Matzkin’s framework in two aspects. First, Section 3.2 allows

us to identify the expected demand y(·, ·) and the expected base cost co(·, ·). A natural

question is whether the knowledge of such functions can help to identify the functions

y(·, ·, ·) and co(·, ·, ·) and the joint distribution of error termsGεd,εc|Z(·, ·|·). Second, we have

a simultaneous equation model, which creates a potential endogeneity problem as Y in the

base cost function may be correlated with the error term εc through εd.
26 While proposing

25Several normalizations can be entertained. For instance, consider the demand equation (20), namely

Y = y(P,Z, εd), where P = p∗(θ, Z) is independent of εd given Z in view of assumption B1. Clearly, the

model is nonparametrically nonidentified as a monotonic transformation of the demand shock εd can be

compensated by an appropriate transformation of the function y(·, ·, ·). Thus, an obvious though strong

normalization is to impose simply that the distribution of εd given Z is known and equal to (say)Go
εd|Z(·|·).

With such a normalization, y(·, ·, ·) is identified since Go
εd|Z(·|z) = Gεd|P,Z(·|p, z) = GY |P,Z [y(p, z, ·)|p, z]

so that y(p, z, ·) = G−1
Y |P,Z [Go

εd|Z(·|z)|p, z]. In addition to requiring that the distribution of εd given Z be

chosen, a similar normalization does not seem to be useful to identify the cost equation (21) as Y is not

independent of εc given Z.
26For a recent contribution to the nonparametric identification of nonlinear simultaneous equation

model with nonadditive error terms, see Matzkin (2005).
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a more general normalization than Matzkin’s (2003) first specification and showing that

this normalization is made without loss of generality, the next lemma establishes that the

knowledge of the expected demand and base cost does not help in identifying the desired

functions and distributions. We need first to introduce some notations and to make some

assumptions following Matzkin’s (2003) first specification.27

Let [εd(z), εd(z)]×[εc(z), εc(z)] be the support of the conditional distribution Gεd,εc|Z(·, ·|
z) of (εd, εc) given Z = z. Similarly, let [y(z), y(z)] and [y(p, z), y(p, z)] denote the supports

of the conditional distributions GY |Z(·|z) and GY |P,Z(·|p, z) of Y = y(P, Z, εd) given Z = z

and (P, Z) = (p, z), respectively. We make the following normalizations, while imposing

natural strict monotonocity conditions on the demand and cost shocks (εd, εc).

Assumption B3:

(i) For all z ∈ Z, and all (εd, εc) ∈ [εd(z), εd(z)] × [εc(z), εc(z)], there exist po(z) ∈
[p(z), p(z)] and yo(z) ∈ [y(z), y(z)] such that

y[po(z), z, εd] = εd and co[yo(z), z, εc] = εc (39)

where po(·) and yo(·) are known.

(ii) The demand and base cost functions y(p, z, ·) and co(y, z, ·) are strictly increasing in εd

and εc, respectively, for all values (y, p, z), while the conditional distributions Gεd|Z(·|·) and

Gεc|εd,Z(·|·, ·) of (εd, εc) are nondegenerated and strictly increasing in their first arguments.

Hereafter, Co is the base cost value, which can be recovered using Lemma 4, namely

Co = C/(θ − e∗(θ, z)) with θ − e∗(θ, z) = E[C|P = p, Z = z]/co(p, z).

27The second specification in Matzkin (2003) is related to the homogeneity of degree one in z and

ε, a property that arises frequently in economic theory. See also Matzkin (1994). As a matter of fact,

such a restriction seems natural for the base cost function, which should be homogenous in degree one

in input prices. This restriction would require to choose some values or functions zo, εco, Co and the

factor of homogeneity γ satisfying the homogeneity of degree one. It remains unclear how to choose

these values as their choice is not without loss of generality. Moreover, because Matzkin’s proof relies

on the use of γ = εc/εco, the conditional distribution of εc can be recovered along a specific value of

z, i.e. (εcz)/εco. Thus Gεd,εc|z(·, ·|·) cannot be identified everywhere. A solution would be to exploit

some exclusion restrictions, where the demand depends only on Z1 and the base cost on Z = (Z1, Z2).

Moroever, the base cost function would be homogenous of degree one in the variable Z2 only and the error

terms (εd, εc) would be independent of Z2 given Z1 thereby allowing to recover Gεd,εc|Z1(·, ·, ·). However,

if Z2 contains input prices, one can expect some correlation with εd invalidating this approach.
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Lemma 5: Let Y = y(P, Z, εd) and Co = co(Y, Z, εc) satisfy assumption B3-(ii) with P

conditionally independent of (εd, εc) given Z. There exists an observationally equivalent

system Y = ỹ(P, Z, ε̃d) and Co = C̃o(Y, Z, ε̃c) with P conditionally independent of (ε̃d, ε̃c)

given Z satisfying assumption B3-(ii) and

y(p, z) = ỹ(p, z), co(y, z) = c̃o(y, z)

ỹ(po(z), z, ε̃d) = ε̃d, c̃o(yo(z), z, ε̃c) = ε̃c

for any (p, z) and (ε̃d, ε̃c), where po(z) ∈ [p(z), p(z)] and yo(z) ∈ [y(z), y(z)] are arbitrary.

Our normalization is more general than the one in Matzkin (2003) by allowing po and yo to

depend on z. If one considers constant values po and yo, as in Matzkin (2003), these values

may not satisfy po ∈ [p(z), p(z)] and yo ∈ [y(z), y(z)] for any z ∈ Z. Lemma 5 shows

that the normalization in assumption B3 does not entail any loss of generality and that

po(·) and yo(·) can be chosen arbitrarily. This argument can be easily seen in the demand

case when the error term is additive. For instance, let ỹ(p, z, ε̃d) = ỹ(p, z) + ε̃d, where

ỹ(p, z) = y(p, z)− y(po(z), z) and ε̃d = εd + y(po(z), z) for an arbitrary po(z) ∈ [p(z), p(z)].

Thus, we have Y = y(p, z, εd) = ỹ(p, z, ε̃d) and ỹ(po(z), z) = 0 leading to ỹ(po(z), z, ε̃d) = ε̃d

thereby satisfying assumption B3. In this sense, the term normalization is appropriate.

As a matter of fact, though quite intuitive as the distribution of y(·, ·, ·) at po(·) reduces

to that of the error term given Z = z, the choice of po(·) may be quite puzzling to the

analyst. Lemma 5 shows that one should not be concerned by the choice of po(·) as long as

it satisfies po(z) ∈ [p(Z), p(Z)]. A similar remark applies to co(·, ·, ·) and yo(·). Moreover,

Lemma 5 shows that the knowledge of the expected demand and expected base cost does

not help in identifying the demand and base cost functions as well as the joint distribution

of error terms.

The next result establishes the nonparametric identification of the demand function

y(·, ·, ·), the base cost function co(·, ·, ·) and the conditional distribution G(·, ·|·) of (εd, εc)

given Z from observations on quantity, price, and costs given λ(·). Let Co = co(Y, Z, εc)

be the (random) base cost. Because C = [θ − e∗(θ, Z)]Co, where C is observed and

θ − e∗(θ, Z) = ∆(P, Z) is identified by Lemma 4, it follows that the base cost Co can

be recovered and its conditional distribution GCo|Y,P,Z(·|·, ·, ·) given (Y, P, Z) is identified.
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More formally, because ∆(P, Z) ≥ 1, we have

GCo|Y,P,Z(co|y, p, z) = GC|Y,P,Z[co∆(p, z)|y, p, z]

for any co, where GC|Y,P,Z(·|·, ·, ·) is the conditional distribution of C given (Y, P, Z). This

information is used next.

Proposition 5: Suppose that λ(·) is known in the basic model with assumptions A1–A3

and B1–B3.

(i) The demand function y(·, ·, ·) and the conditional distribution Gεd|Z(·|·) of εd given Z

are uniquely determined by the conditional distribution GY |P,Z(·|·, ·) as

y(p, z, εd) = G−1
Y |P,Z

{
GY |P,Z[εd|po(z), z]|p, z

}
(40)

Gεd|Z(·|z) = GY |P,Z[ · |po(z), z]. (41)

(ii) Suppose that for all z ∈ Z, and all εd ∈ [εd(z), εd(z)], there exists p†(z, εd) ∈ [p(z), p(z)]

such that yo(z) = y[p†(z, εd), z, εd]. Thus the base cost function co(·, ·, ·) and the conditional

distribution Gεc|εd,Z(·|·, ·) of εc given (εd, Z) are uniquely determined by the conditional

distribution GCo|Y,P,Z(·|·, ·, ·) as

co(y, z, εc) = G−1
Co|Y,P,Z

{
GCo|Y,P,Z[εc|yo(z), p†(z, εd), z]|y, p, z

}
(42)

Gεc|εd,Z(·|εd, z) = GCo|Y,P,Z[ · |yo(z), p†(z, εd), z], (43)

where p†(·, ·) is identified and y = y(p, z, εd).

The proof of (i) follows Matzkin(2003) as θ and hence P are independent of εd given Z by

assumption B1. On the other hand, (θ, εd) and hence Y = y(P, Z, εd) are not independent

of εc given Z because of the endogeneity issue. The proof of (ii) is only slightly more

involved as it exploits the additional condition in (ii). This condition says roughly that

for any z and any value of the demand shock εd there exists a price p†(z, εd) for which the

output y[p†(z, εd), z, εd] is equal to the reference output yo(z) of assumption B3. Hereafter,

it is assumed that such a condition holds. As yo(z) can be chosen arbitrarily by Lemma

5, this condition actually requires the demand function y(·, ·, ·) and supports [p(z), p(z)]

and [εd(z), εd(z)] to be such that
⋂

(p,εd)∈[p(z),p(z)]×[εd(z),εd(z)]{y = y(p, z, εd)} is nonempty for
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every z ∈ Z.28

Lastly, the conditional distribution Gεt|εd,εc,Z(·|·, ·, ·) of εt given (εd, εc, Z) is identified

from observations on (Y, C, P, T, Z). For, the demand and cost shocks (εd, εc) can be

recovered from (Y, C, P, Z) through (20)–(21) as y(·, ·, ·) and co(·, ·, ·) are identified by

Proposition 5. The identification of Gεt|εd,εc,Z(·|·, ·, ·) follows immediately from (24), since

εt can be expressed as a function of (C, P, T, Z) and functions that are identified and

thus estimable from observations on (Y, C, P, T, Z) by Lemma 4 and Proposition 4. For

a simpler expression than (24), see Lemma 5 below. Moreover, because Gεc|εd,Z(·|·, ·) and

Gεd|Z(·|·) are identified by Proposition 5, then the joint distribution G(·, ·, ·|·) of (εd, εc, εt)

given Z is identified.

4 The Cost of Public Funds

The previous identification results can be used when the cost of public fund λ(·) is known.

In the US, λ = 0.3 is a well accepted value among economists, while the cost of public

funds takes larger values in developing countries. On the other hand, in microeconomet-

ric studies, one may want to distinguish regulatory contracts according to the regulator

and/or market. In this case, identification of the cost of public fund as a function λ(·) of

some characteristics Z is of interest. This is the purpose of this section. We first show

that the cost of public funds is not identified in general. We then propose some identifying

conditions for λ(·).

4.1. Nonidentification of λ(·)
To address the nonidentification of λ(·), we first extend assumptions A2-A3, which follow

Laffont and Tirole (1986). In particular, our assumptions are expressed in terms of the

observables (Y, C, P, T, Z) and impose implicit restrictions on λ(·). Specifically, we de-

fine the error terms as identified functions of the observables given λ(·). From (20) and

assumption B3, the demand error term εd can be expressed as a function of (Y, P, Z),

namely φd(Y, P, Z). Similarly, using (21), (29), (30) and assumption B3, the base cost

28It can be relaxed. For instance, following the proof of (ii), one obtains the identification of

Gεc|εd,Z(·|εd, z) for those values of (εd, z) for which there exists a price p†(z, εd) satisfying yo(z) =

y[p†(z, εd), z, εd]. Similarly, one obtains the identification of co(y, z, εc) for those values of (y, z), where

y = y(p, z, εd) and (z, εd) satisfies yo(z) = y[p†(z, εd), z, εd].
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error term εc can be expressed as a function of (Y, C, P, Z), namely φc(Y, C, P, Z). Using

(24), (29), (30), and (33), the transfer error term εt can be expressed as a function of

(Y, C, P, T, Z), namely φt(Y, C, P, T, Z). As in Section 3, the cost efficiency function H(·)
is the identity function.29

Assumption C1:The cost of public funds λ(·) and the joint distribution of (Y, C, P, T )

given Z satisfy

(i) y(p, z) > 0, E[C|P = p, Z = z] > 0

(ii) Γ(p, z) > 0, ∂Γ(p, z)/∂p < 0

(iii) ∂∆(p, z)/∂p > 0 and Γ(p, z) < co(p, z)

for any p ∈ [p(z), p(z)] and z ∈ Z. Moreover,

(iv) for some po(·) ∈ [p(·), p(·)] and yo(·) ∈ [y(·), y(·)], the random variables φd(Y, P, Z),

φc(Y, C, P, Z) and φt(Y, C, P, T, Z) are conditionally independent of P given Z

(v) the conditional distribution GP |Z(·|·) has a strictly positive density on its support

{(p, z) : p ∈ [p(z), p(z)], z ∈ Z} with p(·) < p(·), while the conditional distributions

GY |P,Z(·|·, ·) and GC|Y,P,Z(·|·, ·, ·) are nondegenerated and strictly increasing in their first

arguments.

Note that µ(·) = λ(·)/(1 + λ(·)), while ∆(p, z) and Γ(p, z) are defined in (30) and (31),

respectively. Assumption C1-(i) is made implicitly in Section 2 as strictly positive ex-

pected demand and cost are generally assumed. As such, these assumptions are quite

standard. Assumption C1-(ii) ensures that the expected transfer is strictly decreasing

and convex in θ − e as required by Proposition 3. Regarding assumption C1-(iii), the

inequalities R(p, z) > 0 and ∂∆(p, z)/∂p > R(p) in Proposition 4 ensure a strictly

decreasing effort function and a strictly increasing price schedule, respectively as re-

quired by Lemma 2. From (32), R(p, z) > 0 is equivalent to have its denominator

Γ(p, z) − co(p, z) + µ(z)(GP |Z(p|z)/gP |Z(p|z)) × (∂Γ(p, z)/∂p) < 0 since the numerator

is negative in view of ∂Γ(p, z)/∂p < 0 as required by assumption C1-(ii). This inequal-

ity can be rewritten as Γ(p, z) < co(p, z) − µ(z)(GP |Z(p|z)/gP |Z(p|z)) × (∂Γ(p, z)/∂p).

On the other hand, ∂∆(p, z)/∂p > R(p) is equivalent to Γ(p, z) < co(p, z) after some

29Hereafter, it is assumed that, for any structure in S defined below, there exists a p†(z, εd) satisfying

the additional condition of Proposition 5-(ii). This implies some restrictions which are implicitly included

in assumption C1.
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elementary algebra. Hence the combination of the two inequalities holds if and only if

∂∆(p, z)/∂p > 0 and Γ(p, z) < co(p, z). Assumption C1-(iv) is a direct consequence of

assumption B1 combined with p(θ, z) strictly increasing in θ. Lastly, the first part of

assumption C1-(v) follows those on F (·|·), while the second part of assumption C1-(v)

parallels the second part of assumption B3-(ii).

For the basic model, we define the set of structures S ≡ {S = [y, co, ψ, F,G, λ] :

assumptions A1, B1 − B3, hold}. Note that assumptions A2-A3 need not be satisfied

by structures in S. A conditional distribution for (Y, C, P, T ) given Z is induced by a

structure S ∈ S if it satisfies (20)–(24) for some effort function e(θ, Z).

Lemma 6: Let S ∈ S. If S satisfies assumptions A2-A3, then S induces a conditional

distribution for (Y, C, P, T ) given Z satisfying assumption C1.

Lemma 6 shows that assumptions A2-A3 are stronger than assumption C1. This result

is not surprising as assumption C1 provide parsimonious conditions for the observables

relying on the first-order and second-order conditions and the implementation. As a

matter of fact, the next lemma shows that assumption C1 provides necessary and sufficient

conditions for the conclusions of Lemmas 1-2 and Proposition 3 to hold, namely (i) the

firm’s objective function is strictly concave in effort so that there is a unique solution to

the firm’s effort maximization problem, (ii) the optimal effort is strictly decreasing in θ

so that the local second-order condition (19) is satisfied, (iii) the optimal price schedule

is strictly increasing in θ, (iv) truth telling provides the global maximum of the firm’s

problem and (v) the expected transfer is strictly decreasing and convex in the firm’s cost

inefficiency level. Hence, assumptions A2-A3 are sufficient but not necessary.

Lemma 7: If S ∈ S satisfies the conclusions of Lemmas 1-2 and Proposition 3, then

the conditional distribution of (Y, C, P, T ) given Z induced by S satisfies assumption C1.

Conversely, if the cost of public fund λ(·) and the conditional distribution of (Y, C, P, T )

given Z satisfy assumption C1, then there exists a structure in S satisfying the conclusions

of Lemmas 1-2 and Proposition 3 and rationalizing the observations (Y, C, P, T ) given Z.

Lemma 7 shows that assumption C1 characterizes all the restrictions imposed by the

model on observables. The derivation of such restrictions is interesting in the structural

approach as it allows the analyst to test the validity of the model. Such an issue is left

for future research and is treated in Perrigne and Vuong (2007a).
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We are now in a position to address the identification of λ(·). The next proposition

shows that the cost of public funds is not identified. The proof relies on constructing

a structure that is observationally equivalent to the original structure generating the

observations (Y, C, P, T ).

Proposition 6: In the basic model consisting of structures S inducing conditional prob-

ability distributions for (Y, C, P, T ) given Z that satisfy assumption C1, the cost of public

funds λ(·) is not identified.

This result is a consequence of Lemma 7. As shown in the proof, it suffices to find

another cost of public funds λ̃(·) in a structure S̃ that is observationally equivalent to the

original structure S generating the observables (Y, C, P, T ) and that satisfies assumption

C1. Given that the cost of public funds is not identified, we consider some identifying

conditions or assumptions in the next subsection.30

4.2. Identifying Conditions for λ(·)
We need first a lemma that expresses the firm’s rent and the realized transfer directly

from observations on (Y, C, P, T, Z) and identified functions.

Lemma 8: In the basic model with assumptions A1, B1-B2 and C1, the firm’s transfer

can be written as

T = E[T |P, Z] − ∂E[T |P, Z]/∂p

∂E[C|P, Z]/∂p−[Py′(P, Z)+µy(P, Z)]

(
C−E[C|P, Z]

)
+ εt (44)

where E[εt|P, Z] = 0. Moreover, the firm’s expected rent is

U∗(θ) = E[T |P =p, Z=z] − E[T |P =p(z), Z=z] −
∫ p(z)

p
Γ(p̃, z)R(p̃, z)dp̃ ≥ 0 (45)

where θ = θ∗(p, z) as given by (35).

Equation (44) is interesting for several reasons. First, note that the fraction in (44) is

strictly positive as it is equal to ψ′(e, Z)/co(P, Z). Thus, the ex post transfer T is equal

to its expectation E[T |P, Z] plus a combined residual νt, which is the difference between

the random term εt and a positive fraction of the overrun cost C − E[C|P, Z]. Moreover,

30Another identification strategy would be to consider the implicit and explicit restrictions on λ(·)
embodied in assumption C1 and to derive some bounds for λ(·) given the distribution of (Y,C, P, T, Z)

in the spirit of Manski and Tamer (2002) and Chernozhukov, Hong and Tamer (2006).
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because the firm’s ex post rent is equal to ex post transfer minus the disutility of effort

ψ(e, z), while the expected rent is equal to the expected transfer minus ψ(e, z), it follows

that the ex post rent is equal to (45) plus the combined residual νt. Second, as indicated

in subsection 3.3, when λ(·) and hence µ(·) are known, (44) can be used to recover εt and

hence to establish the identification of Gεt|εd,εc,Z(·|·, ·, ·). Third, (44) suggests how µ(·)
and hence λ(·) can be identified.

Equation (44) gives us an expression of the transfer in terms of the observables

(Y, C, P, T, Z), the cost of public funds µ(·) and the unobserved heterogeneity εt. This

suggests that identifying assumptions need to be made on εt. We note that E(εt|Z) = 0

or E(εt|P, Z) = 0 is not sufficient to identify µ(·) because (44) would lead to an identity.

We could then exploit other conditional independence of εt to drop the term of unob-

served heterogeneity in (44). Several assumptions can be entertained. For instance, we

could think of an instrumental variable approach and find some instruments Z1 in the

vector of exogenous variables Z = (Z1, Z2) such that εt is independent of Z1 conditional

on Z2 and θ. More generally, we could find some additional instruments W that are

conditionally independent of εt given (Z, θ). This would lead to the conditional expec-

tation of W (T − E[T |P, Z]) given (P, Z). From (44), the latter would be equal to (say)

K(µ, P, Z)E[W (C − E[C|P, Z])|P, Z], since E[Wεt|P, Z] = 0 by assumption. From such

an equality, one can recover µ(·). Though this approach is standard in econometrics,

the choice of instruments requires some attention. Morever, the analyst may not have

additional exogenous variables beyond those embodied in Z.

A second possibility is to view (44) with a combined error term νt as discussed above.

In particular, (44) expresses the transfer as the sum of the expected transfer and an error

term νt, where the first part of νt is a function of the cost overrun and the second part of νt

is the unobserved heterogeneity εt. We exploit this decomposition and assume that these

two error terms are conditionally independent given (Z, θ). This is equivalent to assuming

that the observed cost C and εt are conditionally independent given (θ, Z) or equivalently

(P, Z). If we adopt the second interpretation in subsection 3.1 for introducing εt, then εt

can be interpreted as the residual transfer upon the regulator’s discretion. Because such

a residual transfer is unrelated to cost efficiency, it is natural to assume that C and εt are

independent conditional upon (θ, Z). Moreover, this assumption would lead to a simple

way to identify µ(·) as shown in the next proposition. For this reason and the fact that
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it does not require any instrument, we choose this identifying assumption.

Assumption C2: C and εt are independent conditional upon (θ, Z).31

In particular, because P = p∗(θ, Z) and e = e∗(θ, Z), it follows from (20)-(21) that as-

sumption C2 is satisfied if (εd, εc) is independent of εt given (θ, Z). The next proposition

establishes the nonparametric identification of the cost of public funds λ(·) from observa-

tions (Y, C, P, T, Z).

Proposition 7: In the basic model with assumptions A1, B1–B3, and C1-C2, the cost-

of-public-funds function λ(·) is uniquely determined by λ(z) = µ(z)/[1 − µ(z)], where

µ(z) =
1

E[Y |P =p, Z=z]

{
∂E[T |P =p, Z=z]

∂p

Var[C|P =p, Z=z]

Cov[C, T |P =p, Z=z]

+
∂E[C|P =p, Z=z]

∂p
− p

∂E[Y |P =p, Z=z]

∂p

}
(46)

with Cov[C, T |P =p, Z=z] < 0, for every p ∈ [p(z), p(z)].

Because p can be chosen arbitrarily, (46) shows that µ(·) and hence λ(·) are overidentified.

Thus, weaker assumptions than assumption C2 can be exploited to achieve identification

of the cost of public funds. For instance, we could assume that assumption C2 holds for

the most efficient firm only. In this case, (46) holds only at P = p(z).

5 The General Model

So far we have studied the identification of the basic model with H(·) being the iden-

tity function. In this section, we consider the general model. We distinguish two cases

depending on whether the function H(·) is known.

5.1. Identification When H(·) Is Known

Hereafter, assumptions A1 and B1 hold. The function H(·, ·) takes a known form Ho(·, ·)
with H ′

o(·, ·) > 0 and H ′′
o (·, ·) ≥ 0 following assumption A2-(iii), where the prime de-

notes the derivative with respect to the first argument as before. The function Ho(·, ·)
31As a matter of fact, we only need that cost and residual transfer are uncorrelated given (θ, Z), i.e.

E[Cεt|θ, Z] = 0. In line with assumption B1, which can be weakened as indicated in footnote 21, we use

again a conditional independence requirement that is stronger.
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is frequently chosen to be the exponential function in view of the popular Cobb-Douglas

specification, in which case efficiency is neutral with respect to all inputs.32

The identification of the model with Ho(·, ·) known follows a similar path as for the

basic model.33 In view of the proofs of Lemma 4 and Proposition 4, some normalizations

are needed for the cost efficiency level of the most efficient firm to recover co(p, z) and

the effort level of the least efficient firm to recover e∗(p, z). Thus we make a similar

location-scale normalization.

Assumption D1: For every value z ∈ Z

Ho[θ(z) − e∗(θ(z), z)] = 1 and e∗[θ(z), z] = 0. (47)

Since the term Ho(·, ·) defines the firm’s cost efficiency level, it is natural to set it at

one for the most efficient firm and to set the effort for the least efficient firm at zero as

discussed in Section 3.2.

We can now discuss the identification of the model. It is straightforward to see that

y(p, z) = E[Y |P = p, Z = z]. Regarding co(p, z), we use E[C|P = p, Z = z] = Ho(θ −
e, z)co(p, z) and the FOC py′(p, z) + µ(z)y(p, z) = Ho(θ − e, z)c′o(p, z). The ratio of

these two equations provides a differential equation whose solution is given in (29) using

the first normalization in (47). On the other hand, instead of (30), the asymmetric

information term becomes θ − e∗(θ, z) = ∆(p, z) ≡ H−1
o

[
E[C|P = p, Z = z]/co(p, z)

]
,

where the function ∆(·, ·) satisfies ∆(·, ·) ≥ H−1
o (1, ·) and ∂∆(·, ·)/∂p > 0. The function

Γ(·, ·) is defined as in (31), while the function R(·, ·) is defined as in (32) except that

the denominator is replaced by Γ(p, z)−H ′
o(θ− e, z)co(p, z)+µ(z)[GP |Z(p|z)/gP |Z(p|z)]×

∂Γ(p, z)/∂p. Note that R(·, ·) is a function of observables as the term θ−e can be replaced

by H−1
o

[
E[C|P = p, Z = z]/co(p, z)

]
. Hence, the effort disutility is still given by (33) using

the second normalization in (47), while the optimal effort and type functions are given by

32Gagnepain and Ivaldi (2002), Perrigne (2002) and Brocas, Chan and Perrigne (2006) consider another

economic interpretation of the term θ − e. In particular, these papers consider that θ − e or θ affects

labor efficiency, where the effective quantity of labor is (say) L∗ = L/(θ− e) or L/θ. In their parametric

specifications, this interpretation constrains the value of the coefficient for θ − e.
33To shorten this section, we have avoided to provide formal lemmas and propositions with their proofs.

Such proofs are available upon request to the authors.
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(34) and (35). Thus the function F (·|·) is recovered as the distribution of θ as previously.

As expected, Lemma 5 and Proposition 5 still hold under assumption B3 establishing the

identification of y(·, ·, ·), co(·, ·, ·) and Gεd,εc,εt|Z(·, ·, ·|·). Regarding Lemma 8, the slope

of the transfer takes a slightly more involved form because H ′
o(·, ·) is no longer equal to

one. In particular, the slope should be divided by ∂H−1
o

[
E[C|P = p, Z = z]/co(p, z)

]
/∂p.

Under assumption B4 the cost of public funds is identified, though µ(·) cannot be obtained

explicitly as in (46). Consequently, an algorithm is needed to determine µ(·).
The following assumption provides some conditions that the distribution of (Y, C, P, T )

given Z must satisfy.

Assumption D2:The joint distribution of (Y, C, P, T ) given Z and the cost of public

funds λ(·) satisfy assumption C1 with the exception of the second inequality in item (iii),

which is replaced by Γ(p, z) < H ′
o(∆(p, z), z)co(p, z).

Following its proof, Lemma 6 extends to the case whenHo(·, ·) is known but not necessarily

the identity, namely if a structure S = {[y, co, Ho, ψ, F,G, λ]} satisfies assumptions A1–

A3, B1, B3, and D1 then its induced distribution for (Y, C, P, T ) given Z that satisfies

assumption D2.34

5.2. Nonidentification of the General Model

We now consider the general model satisfying assumption A1, where H(·, ·) is unknown.

As expected, this model also requires a location-scale normalization as in assumption D1

with H(·, ·) replacing Ho(·, ·). To see this, we can follow a similar argument as in the proof

of Lemma 3 by considering a linear transformation of the types and structures satisfying

ỹ(·, ·, ·) = y(·, ·, ·), c̃o(·, ·, ·) = co(·, ·, ·), H̃(·, ·) = H(·/β, ·), ψ̃(·, ·) = ψ((· − α)/β, ·), F̃ (·) =

F ((· − α)/β), G̃(·, ·, ·|·) = G(·, ·, ·|·), and λ̃(·) = λ(·).
More importantly, the next proposition shows that one can always find a struc-

ture with the identity function for H(·, ·) observationally equivalent to the structure

[y, co, H, ψ, F,G, λ]. Hence the general model is not identified as one can always rationalize

the observations by another structure of the basic model.

Proposition 8: If S ∈ S ′ ≡ {[y, co, H, ψ, F,G, λ] : assumptions A1 − A3 and B1,B3,D1

hold}, then there exists an observationally equivalent structure S̃ ∈ S with H(·, ·) equal to

34The problem of characterizing all the restrictions imposed by the model with Ho(·, ·) known on

observables is investigated in Perrigne and Vuong (2007a).
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the identity function leading to observations (Y, C, P, T ) given Z that satisfy assumption

C1.

Proposition 8 indicates that the general model is not identified. This is not surprising

in itself. The results in Sections 3 and 4 suggest that identifying H(·, ·) is difficult. The

most interesting part of the above result is that one can always explain equivalently the

observations with the basic model and a fortiori a model where Ho(·, ·) is chosen arbitrarily.

The proof of Proposition 8 suggests that there is some “compensation” between the cost

efficiency term and the other functions in the model leading to the nonidentification of

the general model. Given that a model with Ho(·, ·) known is identified, the analyst could

entertain several Ho(·, ·) functions and empirically assesses the one providing the most

economically sensible results.

6 Conclusion

This paper establishes the nonparametric identification of the incentive regulation model

under incomplete information, namely adverse selection and moral hazard. We consider

a model with stochastic demand and cost functions and a private good. We consider a

multiplicatively separable cost function in the base cost and the firm’s cost inefficiency.

We first show that a location-scale normalization is needed for the cost efficiency of the

most efficient firm and the effort level of the least efficient firm. Exploiting the conditional

independence of the error terms and the firm’s type and the bijective mapping between the

observed price and the firm’s unknown type, we show that at a given cost of public funds

we can recover the structure of the model, namely the demand and base cost functions,

the effort disutility function, the distribution of the firms’ type and the joint conditional

distribution of the stochastic shocks. To identify the cost of public funds, we assume some

conditional independence of the unobserved heterogeneity term affecting the transfer with

the observed cost. To this end, we derive the restrictions that must be satisfied by the cost

of public funds and the observables so as to rationalize the observations by an incentive

regulation model. Lastly, we extend our results to a more general model, in which the cost

efficiency function is known. When such a function is unknown, the model is nonidentified.

Moreover, we show that the latter model is observationally equivalent to a model in which
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the cost efficiency function is the identity.

Our paper represents a stepping stone in the structural analysis of data subject to

incomplete information such as in contracts, insurance and nonlinear pricing. Our iden-

tification results indicate that one does not have to rely on parametric functional forms

to estimate such models as our analysis is sufficiently general to be extended to other

models of incomplete information. As a matter of fact, the incentive regulation model we

consider includes some functions such as the effort disutility and the cost of public funds

that do not appear in a standard model of incomplete information under adverse selection

only such as in nonlinear pricing models. See Huang, Perrigne and Vuong (2007) for the

nonparametric identification and estimation of nonlinear pricing models.

Clearly, the problem of estimating and testing such models needs to be addressed. It

includes two important questions. First, we need to derive the restrictions imposed by the

model on observables to test its validity. Our results (assumption C1, Lemmas 6 and 7)

provide a first step toward this goal. Second, incomplete information is generally assumed.

It would be interesting to assess the adequacy of such a statement. The restrictions

imposed by a complete information model would allow us to test which model (incomplete

or complete information) is the most accurate to explain the data. The problem of testing

adverse selection has known a vivid interest recently and some tests have been developed

within the reduced form approach. See Chiappori and Salanié (2000). A test based

on the theoretical restrictions imposed by the model on observables would provide a

complete answer to this question within the structural approach. Lastly, it remains to

develop suitable nonparametric estimators and to study their asymptotic properties. Our

results show how to express the structural elements of the model from the reduced form

probability distribution of the observables through various conditional expectations. Thus

a multistep estimation procedure could be entertained. A difficulty relies in that many

conditional expectations need to be estimated at some boundaries.
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Appendix A

This appendix gives the proofs of the propositions and lemmas stated in Section 2.

Proof of Proposition 1: From (8) the Hamiltonian of the optimization problem (P’) is

H =
{∫ ∞

p
y(v)dv + (1 + λ)

(
py(p) − ψ(e) − Eε

[
c(y(p, εd), θ − e, εc)

])

−λU(θ)
}
f(θ) + γ(θ)(−ψ′(e)),

where p = p(θ) and e = e(θ) are the control functions, U(θ) is the state variable, and γ(θ) is the

co-state variable. Hence, applying the Pontryagin principle, the FOC are:

Hp =
{
λy(p) + (1 + λ)py′(p) − (1 + λ)Eε

[
c1(y(p, εd), θ − e, εc)y1(p, εd)

]}
f(θ) = 0

He =
{
− (1 + λ)ψ′(e) + (1 + λ)Eε

[
c2(y(p, εd), θ − e, εc)

]}
f(θ) − γ(θ)ψ′′(e) = 0

−HU = λf(θ) = γ′(θ).

The last equation gives γ(θ) = λF (θ) using the transversality condition γ(θ) = 0. Thus,

rearranging Hp and He, the solutions p = p∗(θ) and e = e∗(θ) are given by (12) and (13).2

Proof of Proposition 2: Given the price schedule p∗(·) and the transfer function t∗(·, ·), we

show that the firm will announce its true type θ and exerts the optimal effort e∗(θ) by verifying

the FOC of the firm’s problem (F). Under assumption A1, this problem becomes

(F ∗) max
θ̃,e

E
[
t∗
(
θ̃, c(y(p∗(θ̃), εd), θ − e, εc)

)
| θ
]
− ψ(e)

= Eε

[
t∗
(
θ̃, c(y(p∗(θ̃), εd), θ − e, εc)

)]
− ψ(e)

= A(θ̃) +
ψ′[e∗(θ̃)]

H ′[θ̃ − e∗(θ̃)]

{
H[θ̃ − e∗(θ̃)] −H(θ − e)

}
− ψ(e),

where the first equality follows from the independence between θ and (εd, εc), while the second

equality follows from (15) and (16). Thus, using (17) the FOC with respect to θ̃ and e are

respectively

0 = ψ′[e∗(θ̃)]e∗′(θ̃) − ψ′[e∗(θ̃)] +

{
d

dθ̃

(
ψ′[e∗(θ̃)]

H ′[θ̃ − e∗(θ̃)]

)}{
H[θ̃ − e∗(θ̃)] −H(θ − e)

}

+
ψ′[e∗(θ̃)]

H ′[θ̃ − e∗(θ̃)]
H ′[θ̃ − e∗(θ̃)]

[
1 − e∗′(θ̃)

]
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=

{
d

dθ̃

(
ψ′[e∗(θ̃)]

H ′[θ̃ − e∗(θ̃)]

)}{
H[θ̃ − e∗(θ̃)] −H(θ − e)

}

0 =
ψ′[e∗(θ̃)]

H ′[θ̃ − e∗(θ̃)]
H ′(θ − e) − ψ′(e).

It is easy to see that these FOC are verified if θ̃ = θ and e = e∗(θ).

It remains to show that [p∗(·), t∗(·, ·), e∗(·), U∗(·)] solves the FOC of problem (P). In view

of the discussion surrounding problem (P’), it suffices to show that the transfer function t∗(·, ·)
satisfies (6) and (7) where [p∗(·), e∗(·), U∗(·)] solves the FOC of problem (P’). The preceding

shows that the transfer function t∗(·, ·) satisfies (7). It remains to show that t∗(·, ·) also satisfies

(6). Using (16), the right-hand side of (6) is

A(θ) +
ψ′[e∗(θ)]

H ′[θ − e∗(θ)]
{H[θ − e∗(θ)] −H[θ − e∗(θ)]} − ψ[e∗(θ)] = A(θ) − ψ[e∗(θ)]

= U∗(θ),

by (14) and (17), as desired.2

Proof of Lemma 1: From the problem (F), the second partial derivative of the firm’s objective

function with respect to e is
∫
U33(θ̃, θ, e, εd, εc)dG(εd, εc) =

∫
[t22(·)c22(·) + t2(·)c22(·)]dG(εd, εc) − ψ′′(e),

where we have omitted the arguments of the functions to simplify the notation. But c22(·) =

H ′′(θ − e)co(y(p(θ̃), εd), εc) ≥ 0 by assumptions A1 and A2-(iii). When the transfer function

t(·, ·) is weakly decreasing and concave in realized cost c so that t2(·) ≤ 0 and t22(·) ≤ 0, it

follows from ψ′′(·) > 0 that the firm’s objective function is strictly concave in e for any (θ̃, θ).

Hence, the effort e(θ̃, θ), which solves the FOC (3), is uniquely defined and corresponds to a

global maximum of the problem (FE).

Next, we show that 0 ≤ e2(θ, θ) < 1. This can be seen by differentiating the FOC (3)

defining e(θ̃, θ) with respect to θ. This gives

0 = [1 − e2(θ̃, θ)]Eε

[
t22(·)c22(·) + t2(·)c22(·)

]
+ ψ′′[e(θ̃, θ)]e2(θ̃, θ).

Rearranging and evaluating at θ̃ = θ give

e2(θ, θ)
{
Eε

[
t22(·)c22(·) + t2(·)c22(·)

]
− ψ′′[e(θ)]

}
= Eε

[
t22(·)c22(·) + t2(·)c22(·)

]
.

Under assumptions A1 and A2-(iii), we have c22(·) ≥ 0 as noted above. Thus the expectation

term is nonpositive whenever the transfer function t(·, ·) is weakly decreasing and concave in

realized cost. Because ψ′′(·) > 0 by assumption A2-(iv), it follows that 0 ≤ e2(θ, θ) < 1.2
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Proof of Lemma 2: As noted before assumption A3, the local SOC (19) is satisfied as soon

as e∗′(·) ≤ 0. We show that e∗′(·) < 0. By definition [p∗(·), e∗(·)] satisfies the FOC (12)-(13),

which can be written as

p∗(θ)y′[p∗(θ)] = H[θ − e∗(θ)]c′o[p
∗(θ)] − µy[p∗(θ)] (A.1)

ψ′[e∗(θ)] = H ′[θ − e∗(θ)]co[p∗(θ)] − µ
F (θ)
f(θ)

ψ′′[e∗(θ)], (A.2)

where we have used assumption A1, the definition of co(·), and the expression for c′o(·) found

earlier. Differentiating (12)-(13) with respect to θ and rearranging equations give

Ae∗′(θ) +Bp∗′(θ) = A (A.3)

Ce∗′(θ) −Ap∗′(θ) = D, (A.4)

where

A = H ′[θ − e∗(θ)]c′o[p
∗(θ)]

B = (1 + µ)y′[p∗(θ)] + p∗(θ)y′′[p∗(θ)] −H[θ − e∗(θ)]c′′o [p
∗(θ)]

= (1 − µ)V ′′[p∗(θ)] −H[θ − e∗(θ)]c′′o [p
∗(θ)]

C = ψ′′[e∗(θ)] + µ
F (θ)
f(θ)

ψ′′′[e∗(θ)] +H ′′[θ − e∗(θ)]co[p∗(θ)]

D = H ′′[θ − e∗(θ)]co[p∗(θ)] − µ
d

dθ

(
F (θ)
f(θ)

)
ψ′′[e∗(θ)],

with µ = λ/(1 + λ). Under assumptions A1–A2, note that A < 0, B < 0 and C > 0. Solving

for e∗′(θ) gives

e∗′(θ)

(
C +

A2

B

)
= D +

A2

B
.

Thus, e∗′(·) < 0 if −C < A2/B < −D, i.e. if

−
(
ψ′′[e∗(θ)] + µ

F (θ)
f(θ)

ψ′′′[e∗(θ)]
)

< H ′′[θ − e∗(θ)]co[p∗(θ)] +

{
H ′[θ − e∗(θ)]c′o[p∗(θ)]

}2

(1 − µ)V ′′[p∗(θ)] −H[θ − e∗(θ)]c′′o [p∗(θ)]

< µ
d

dθ

(
F (θ)
f(θ)

)
ψ′′[e∗(θ)]. (A.5)

Because −B ≥ −(1 − µ)V ′′[p∗(θ)] > 0, assumption A3-(i) ensures that

−ψ′′[e∗(θ)] <

{
H ′[θ − e∗(θ)]c′o[p∗(θ)]

}2

(1 − µ)V ′′[p∗(θ)] −H[θ − e∗(θ)]c′′o [p∗(θ)]
,

41



which implies the first inequality in (A.5) by assumption A2. Assumption A3-(ii) is equivalent

to

H ′′[θ − e∗(θ)]co[p∗(θ)] ≤ µ
d

dθ

(
F (θ)
f(θ)

)
ψ′′[e∗(θ)],

which implies the second inequality in (A.5) because B < 0 and H ′[θ−e∗(θ)]co′[p∗(θ)] 6= 0 under

assumption A2.

Lastly, because e∗′(θ) + p∗′(θ)B/A = 1 by (A.3) with A < 0 and B < 0, it follows from

e∗′(·) < 0 that p∗′(·) > 0, as desired.2

Proof of Proposition 3: Recalling that e(θ̃, θ) is the optimal level of effort for a firm with

type θ, the firm’s expected utility (4) from announcing θ̃ is

U(θ̃, θ) = A(θ̃) +
ψ′[e∗(θ̃)]

H ′[θ̃ − e∗(θ̃)]

{
H[θ̃ − e∗(θ̃)] −H[θ − e(θ̃, θ)]

}
− ψ[e(θ̃, θ)]

(see the optimization problem (F ∗) in the proof of Proposition 2). To show that θ̃ = θ provides a

global maximum, we first show that U12(θ̃, θ) > 0 for any (θ̃, θ). From (18), this is equivalent to

showing e1(θ̃, θ) < 0, where e(θ̃, θ) solves the FOC (3), which can be written under assumption

A1 as

0 =
ψ′[e∗(θ̃)]

H ′[θ̃ − e∗(θ̃)]
H ′[θ − e(θ̃, θ)] − ψ′[e(θ̃, θ)],

from the FOC of problem (F ∗). Differentiating this FOC with respect to θ̃ gives

e1(θ̃, θ)
{
ψ′′(·) +

ψ′(·)
H ′(·)H

′′(·)
}

= H ′(·)
{
ψ′′(·)e∗′(·)
H ′(·) − ψ′(·)H ′′(·)[1 − e∗′(·)]

H ′2(·)

}
.

Because e∗′(·) < 0 by Lemma 2, it is easy to verify that the right-hand side is strictly negative

while the term in braces is strictly positive under assumption A2. Hence e1(θ̃, θ) < 0 implying

U12(·, ·) > 0, as desired. Second, we apply the argument in Appendix A1.4 in Laffont and Tirole

(1993) with φ(β, β̂) equal to U(θ̃, θ). This establishes that θ̃ = θ provides the global maximum

of U(θ̃, θ).

To prove the second part, let t(θ) ≡ Eε

[
t∗
(
θ, c(y(p∗(θ), εd), θ − e∗(θ), εc)

)]
so that t = t(θ).

Let H†(θ) ≡ H[θ − e∗(θ)] = Eε

[
c(y(p∗(θ), εd), θ − e∗(θ), εc)

]
/co[p∗(θ)] so that the firm’s cost

inefficiency level H∗ satisfies H∗ = H†(θ). Note that H†(·) is strictly increasing in θ because

dH†/dθ = [1 − e∗′(θ)]H ′[θ − e∗(θ)] > 0 as H ′(·) > 0 and e∗′(·) < 0. Thus θ = H−1
† (H∗). We

want to show that t†(H∗) ≡ t[H−1
† (H∗)] is strictly decreasing and convex in H∗. From (16) and
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assumption A1, we have t(θ) = A(θ). Hence, using (17)

dt†
dH∗ =

A′(θ)
H ′

†(θ)
= − ψ′[e∗(θ)]

H ′[θ − e∗(θ)]
,

which is strictly negative. Thus, the expected transfer is strictly decreasing in H∗, as desired.

Moreover,

d2t†
dH∗2 = − ψ′′[e∗(θ)]e∗′(θ)

H ′2[θ − e∗(θ)][1 − e∗′(θ)]
+

ψ′[e∗(θ)]
H ′2[θ − e∗(θ)]

H ′′[θ − e∗(θ)][1 − e∗′(θ)].

It is easy to see that d2t†/dH
∗2 > 0 under assumption A2 because e∗′(θ) < 0 by Lemma 2. Thus

t†(·) is strictly convex in H∗, as desired.2

Appendix B

This appendix gives the proofs of the propositions and lemmas stated in Sections 3, 4 and 5.

Proof of Lemma 3: Let Ỹ , C̃, P̃ , T̃ denote the endogenous variables under the structure

S̃. Let θ̃ ≡ α + βθ so that θ̃ is distributed as F̃ (·|·) = F [(· − α)/β|·] conditional upon Z. Let

(ε̃d, ε̃c, ε̃t) ≡ (εd, εc, εt) so that (ε̃d, ε̃c, ε̃t) is jointly distributed as G̃(·, ·, ·|·) = G(·, ·, ·|·) conditional

upon Z. We show that (Ỹ , C̃, P̃ , T̃ ) = (Y,C, P, T ), which implies the desired result.

Using ỹ(·, ·, ·) = y(·, ·, ·), c̃o(·, ·, ·) = co(·, ·, ·)/β, (25) and (26), we note that

ỹ(·, ·) =
∫
ỹ(·, ·, ε̃d)dG̃(ε̃d|·) =

∫
y(·, ·, εd)dG(εd|·) = y(·, ·), (B.1)

c̃o(·, ·) =
∫
c̃o[ỹ(·, ·, ε̃d), ·, ε̃c]dG̃(ε̃d, ε̃c|·) =

1
β

∫
co[y(·, ·, εd), ·, εc]dG(εd, εc|·) =

1
β
co(·, ·). (B.2)

Now, we consider the FOC (22)–(23) for (P̃ , ẽ) and use (B.1)–(B.2), ψ̃(·, ·) = ψ[(· − α)/β, ·],
θ̃ = α+ βθ, F̃ (·|·) = F [(· − α)/β|·], f̃(·|·) = (1/β)f [(· − α)/β|·] and λ̃(·) = λ(·) to obtain

P̃ y′(P̃ , Z) + µy(P̃ , Z) =
(
θ − ẽ− α

β

)
c′o(P̃ , Z)

ψ′
(
ẽ− α

β
,Z

)
+ µ

F (θ|Z)
f(θ|Z)

ψ′′
(
ẽ− α

β
,Z

)
= co(P̃ , Z),

since H(x, z) = x and H ′(x, z) = 1 in the basic model. From the solution p∗(θ, z) and e∗(θ, z) of

(22)–(23), it follows that P̃ = p∗(θ, Z) = P and (ẽ−α)/β = e∗(θ, Z) = e. In particular, the latter

implies that ẽ∗(θ̃, Z) = α+ βe∗[(θ̃ − α)/β, Z]. Moreover, because Ỹ = ỹ(P̃ , Z, ε̃d) = y(P̃ , Z, ε̃d),

we obtain Ỹ = Y since P̃ = P and ε̃d = εd.
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Next, we turn to cost and transfer. From (21) with H(x, z) = x, and using (B.2), θ̃ = α+βθ

and ẽ = α+ βe, we have

C̃ = (θ̃ − ẽ)c̃o(Ỹ , Z, ε̃c) = (θ − e)co(Y,Z, εc) = C,

since Ỹ = Y and ε̃c = εc. Moreover, from (23) and the previous results we obtain

T̃ = ψ̃(ẽ, Z) +
∫ θ̃(Z)

θ̃
ψ̃′[ẽ∗(ũ, Z), Z]dũ− ψ̃′(ẽ, Z)

{
C̃

c̃o(P̃ , Z)
−(θ̃−ẽ)

}
+ ε̃t

= ψ(e, Z) +
∫ α+βθ(Z)

α+βθ

1
β
ψ′
[
e∗
(
ũ− α

β
,Z

)
, Z

]
dũ− 1

β
ψ′(e, Z)

{
βC̃

co(P̃ , Z)
−β(θ−e)

}
+ ε̃t

= ψ(e, Z) +
∫ θ(Z)

θ
ψ′ [e∗(u,Z), Z] du− ψ′(e, Z)

{
C̃

co(P̃ , Z)
−(θ−e)

}
+ ε̃t,

where the second equality uses (B.2), ψ̃(·, ·) = ψ[(· − α)/β, ·], θ̃ = α + βθ, ẽ = α + βe and

ẽ∗(θ̃, Z) = α + βe∗[(θ̃ − α)/β, Z], while the third equality follows from the change of variable

u = (ũ− α)/β. Thus, (23) implies that T̃ = T since C̃ = C, P̃ = P and ε̃t = εt.

Lastly, because of the linear transformation given every value of Z, it is easy to verify that

the structure S̃ satisfies assumptions A1–A3 and B1 as soon as the structure S satisfies these

assumptions.2

Proof of Lemma 4: Recall that P = p∗(θ, Z), where p∗(·, ·) is the optimal price schedule.

Assumption B1 implies that P is independent of εd given Z. Hence, (20) gives E[Y |P = p, Z =

z] = E[y(p, z, εd)|P = p, Z = z] = E[y(p, z, εd)|Z = z] =
∫
y(p, z, εd)dG(εd|z) = y(p, z) by (25).

This establishes (28).

Regarding (26), we recall that θ can be expressed as a function θ∗(P,Z) = p∗−1(P,Z), which

is strictly increasing in P since P = p∗(θ, Z) is strictly increasing in θ by Lemma 2. Thus, e

can be expressed as a function e∗(P,Z), which is strictly decreasing in P because e = e∗(θ, Z)

is strictly decreasing in θ by Lemma 2, while θ = θ∗(P,Z) is strictly increasing in P . Now, from

(21) with H(x, z) = x and using θ − e = θ∗(P,Z) − e∗(P,Z), we obtain

E[C|P = p, Z = z] = (θ − e)E
[
co[y(p, z, εd), z, εc]|P = p, Z = z

]

= (θ − e)E
[
co[y(p, z, εd), z, εc]|Z = z

]

= (θ − e)
∫
co[y(p, z, εd), z, εc]dG(εd, εc|z)

= (θ − e)co(p, z), (B.3)

where θ − e = θ∗(p, z) − e∗(p, z). The second equality follows from assumption B1 and the last

equality follows from (26). In particular, (B.3) establishes (30) with ∆(·, ·) satisfying ∆(·, ·) ≥ 1
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and ∂∆(·, ·)/∂p > 0 because θ − e = θ∗(p, z) − e∗(p, z) is strictly increasing in p with strictly

positive derivative with respect to p by Lemma 2 implying θ∗(p, z) − e∗(p, z) ≥ θ∗[p(z), z] −
e∗[p(z), z] = θ(z) − e∗[θ(z), z] = 1 by (27). Moreover, writing (B.3) at p = p(z), which is the

price for the most efficient firm with type θ(z) and exerting the maximal effort e(z) = e∗[θ(z), z],

we obtain

E[C|P = p(z), Z = z] = co[p(z), z], (B.4)

because [θ(z) − e(z)] = 1 by the normalization (27).

Next, we write (22) with H(x, z) = x at Z = z so that P = p∗(θ, z) = p and e = e∗(θ, z).

Dividing the resulting equation by (B.3) we obtain

py′(p, z) + µy(p, z)
E[C|P = p, Z = z]

=
c′o(p, z)
co(p, z)

.

Integrating this differential equation from p(z) to some arbitrary p ∈ [p(z), p(z)], where p(z) ≡
p∗[θ(z), z)] is the price for the least efficient type when Z = z, we obtain

log

(
co(p, z)
co(p(z), z)

)
=

∫ p

p(z)

p̃y′(p̃, z) + µy(p̃, z)
E[C|P = p̃, Z = z]

dp̃.

Solving for co(p, z) and using the boundary condition (B.4) give (29).2

Proof of Proposition 4: Because θ − e = θ∗(p, z) − e∗(p, z), differentiating (30) with respect

to p gives

∂θ∗(p, z)
∂p

− ∂e∗(p, z)
∂p

=
∂∆(p, z)
∂p

> 0, (B.5)

where ∂θ∗(·, ·)/∂p > 0 and ∂e∗(·, ·)/∂p < 0 from Lemma 2. In particular, θ = θ∗(P,Z) and

e = e∗(P,Z) are in bijections with P given Z. Thus, taking conditional expectation of (24)

given (P,Z) = (p, z), and using (B.3) together with E[εt|P = p, Z = z] = E[εt|θ, Z = z] =

E[εt|Z = z] = 0 by assumption B1, we obtain

E[T |P =p, Z=z] = ψ(e, z) +
∫ θ(z)

θ
ψ′[e∗(θ̃, z), z]dθ̃, (B.6)

where θ = θ∗(p, z), θ(z) = θ∗[p(z), z] and e = e∗(p, z). Differentiating (B.6) gives

∂E[T |P =p, Z=z]
∂p

= ψ′(e, z)
(
∂e∗(p, z)

∂p
− ∂θ∗(p, z)

∂p

)
, (B.7)

where we have used e∗(θ, z) = e∗(p, z) = e. Thus, (B.5), (B.7) and (31) give

ψ′(e, z) = Γ(p, z) > 0, (B.8)
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because ψ′(·, z) > 0 by assumption A2. Differentiating (B.8) again gives

ψ′′(e, z)
∂e∗(p, z)

∂p
=
∂Γ(p, z)
∂p

< 0, (B.9)

because ψ′′(·, z) > 0 by assumption A2 and ∂e∗(p, z)/∂p < 0 by Lemma 2. Using (B.8)–(B.9)

into (23) with H ′(x, z) = 1 at Z = z so that P = p∗(θ, z) = p and e = e∗(θ, z), we obtain

Γ(p, z) + µ
GP |Z(p, z)
gP |Z(p, z)

∂Γ(p, z)
∂p

∂θ∗(p, z)/∂p
∂e∗(p, z)/∂p

= co(p, z), (B.10)

where we have used the property that F (θ|z)/f(θ|z) = [GP |Z(p, z)/gP |Z(p, z)]∂θ∗(p, z)/∂p be-

cause θ = θ∗(p, z) is strictly increasing in p from Lemma 2.

We now solve (B.5) and (B.10) for ∂e∗(p, z)/∂p and ∂θ∗(p, z)/∂p to obtain after some algebra

∂e∗(p, z)
∂p

= −R(p, z) < 0 (B.11)

∂θ∗(p, z)
∂p

=
∂∆(p, z)
∂p

−R(p, z) > 0, (B.12)

where R(p, z) is as given in (32) with R(p, z) > 0 because ∂e∗(·, z)/∂p < 0 by Lemma 2.

Similarly, the right-hand side of (B.12) must be strictly positive because ∂θ∗(·, z)/∂p > 0 by

Lemma 2 leading to ∂∆(p, z)/∂p > R(p, z). Now, note that e∗[p(z), z] = e∗[θ(z), z] = 0 by (27).

Moreover, from (30), we have θ∗[p(z), z] − 0 = ∆[p(z), z]. Thus, integrating (B.11) and (B.12)

from some arbitrary p ∈ [p(z), p(z)] to p(z), and using the preceding boundary conditions, we

obtain (34) and (35). As all the functions on the right-hand side of (35) are identified, it follows

that the firm’s type θ can be recovered from (p, z), and that the conditional distribution F (·|z)
of type is identified as the distribution of θ = θ∗(P, z), where P is distributed as GP |Z(·|z).

Lastly, let e(z) ≡ e∗[p(z), z] = e∗[θ(z), z] = 0 by the normalization (27), and let e(z) ≡
e∗[p(z), z] = e∗[θ(z), z]. Integrating (B.8) from 0 to some arbitrary e ∈ [e(z), e(z)], where

p = p∗(·, z) is the inverse function of e∗(·, z), gives

ψ(e, z) = ψ(0, z) +
∫ e

0
Γ[p∗(ẽ, z), z]dẽ,

which establishes (33) since (B.6) evaluated at p = p(z) gives E[T |P =p(z), Z = z] = ψ(0, z) as

e = e∗[p(z), z] = 0 and θ = θ∗[p(z), z] = θ(z) when p = p(z).2

Proof of Lemma 5: Let ε̃d = y(po(Z), Z, εd) for an arbitrary po(·) ∈ [p(·), p(·)]. Thus,

εd = y−1[po(Z), Z, ε̃d] since y(·, ·, ·) is strictly increasing in εd by assumption. Moreover, let

y(p, z, y−1[po(z), z, ε̃d]) = ỹ(p, z, ε̃d), which is strictly increasing in ε̃d . Thus, we have ỹ(po(z), z, ε̃d)

46



= ε̃d thereby satisfying the first equality in (39). We need to verify that y(p, z) = ỹ(p, z). In

particular,

ỹ(p, z) = E[ỹ(p, z, ε̃d)|p, z]

= E[y(p, z, y−1[p0(z), z, ε̃d])|p, z]

= E[y(p, z, εd)|p, z] = y(p, z).

We can apply the same reasoning for c̃o(y, z, ε̃c). Let ε̃c = co(yo(Z), Z, εc) for an arbitrary

yo(·) ∈ [y(·), y(·)]. Thus, εc = c−1
o [yo(Z), Z, ε̃c] since co(·, ·, ·) is strictly increasing in εc by

assumption. Let co(y, z, c−1
o [yo(z), z, ε̃c]) = c̃o(y, z, ε̃c), which is strictly increasing in ε̃c. Thus,

we have c̃o(y0(z), z, ε̃c) = ε̃c thereby satisfying the second inequality in (39). We need to verify

that co(p, z) = c̃o(p, z). In particular,

c̃o(y, z) = E[c̃o(y, z, ε̃c)|p, z]

= E[co(ỹ(p, z, ε̃d), z, c−1
o [yo(z), z, ε̃c])|p, z]

= E[co(y(p, z, εd)z, εc)|p, z] = co(p, z).

It remains to show that these two models are observationally equivalent, which is straightfor-

ward. Since ε̃d = y(po(Z), Z, εd), we have ỹ(P,Z, ε̃d) = y(P,Z, y−1[po(Z), Z, y(po(Z), Z, εd)]) =

y(P,Z, εd). Similarly, since ε̃c = co(yo(Z), Z, εc), we have c̃o(Y,Z, ε̃c) = co(Y,Z, c−1
o [yo(Z), Z,

co(yo(Z), Z, εc)]) = co(Y,Z, εc). Thus, we have Y = y(P,Z, εd) = ỹ(P,Z, ε̃d) and Co = co(Y,Z, εc)

= c̃o(Y,Z, ε̃c). Lastly, P is conditionally independent of (ε̃d, ε̃c) given Z because P is condition-

ally independent of (εd, εc) given Z combined with ε̃d = y(po(Z), Z, εd) and ε̃c = co(yo(Z), Z, εc).

Because the latter functions are strictly increasing in εd and εc, respectively, it follows that

Gε̃d|Z(·|·) and Gε̃c|ε̃d
, Z(·|·, ·) are strictly increasing in their first arguments.2

Proof of Proposition 5: Part (i) follows exactly Matzkin (2003) identification argument.

Because εd is independent of θ given Z by assumption B1, then εd is independent of P = p∗(θ, Z)

given Z. Thus, if Gεd|P,Z(·|·, ·) denotes the conditional distribution of εd given (P,Z), then

for every (p, z) we have Gεd|Z(·|z) = Gεd|P,Z(·|p, z) = GY |P,Z [y(p, z, ·)|p, z] because y(p, z, ·) is

strictly increasing in εd. In particular, this shows that GY |P,Z(·|p, z) is strictly increasing in its

first argument in view of the second part of assumption B3. Hence, for every (p, z) we have

y(p, z, ·) = G−1
Y |P,Z[Gεd|Z(·|z)|p, z]. (B.13)

Moreover, letting p = po(z) we obtainGεd|Z(·|z) = GY |P,Z [y(po(z), z, ·)|po(z), z] = GY |P,Z [·|po(z),

z], where the second equality follows from the first normalization in (39). This establishes (41)

and hence (40) using (B.13).
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To prove (ii) we extend Matzkin’s argument as Y = y(P,Z, εd) is not independent from

εc given Z in Co = co(Y,Z, εc). On the other hand, we exploit the fact that P is indepen-

dent from εc given (εd, Z) because P = p∗(θ, Z) and θ is independent of εc given (εd, Z) by

assumption B1. Thus, similarly to above, we obtain Gεc|εd,Z(·|εd, z) = Gεc|εd,P,Z(·|εd, p, z) =

GCo|εd,P,Z{co[y(p, z, εd), z, ·]|εd, p, z} = GCo|Y,P,Z[co(y, z, ·)|y, p, z] because co(y, z, ·) is strictly in-

creasing in εc and y ≡ y(p, z, εd). In particular, GCo|Y,P,Z(·|y, p, z) is strictly increasing in its

first argument in view of the second part of assumption B3. Hence, we have

co(y, z, ·) = G−1
Co|Y,P,Z[Gεc|εd,Z(·|εd, z)|y, p, z], (B.14)

for every (y, p, z, εd) satisfying y = y(p, z, εd). We now exploit the second normalization in (39).

Given the additional conditional in (ii), let p = p†(z, εd) in (B.14). We obtain

Gεc|εd,Z(·|εd, z) = GCo|Y,P,Z

[
co{y[p†(z), z, εd)], z, ·} | y[p†(z), z, εd)], p†(z, εd), z

]

= GCo|Y,P,Z

[
co{yo(z), z, ·} | yo(z), p†(z, εd), z

]

= GCo|Y,P,Z [· | yo(z), p†, z] ,

where the second equality follows from the additional condition in (ii), while the third equality

follows from the second normalization in (39). This establishes (43). Equation (42) follows from

(B.14). Lastly, p†(·, ·) is identified as yo(·) is known and y(·, ·, ·) is identified by (i).2

Proof of Lemma 6: Hereafter, the results hold for any p ∈ [p(z), p(z)] and z ∈ Z. The first

condition in assumption C1-(i) follows from (25) and by using y(·, ·, ·) ≥ 0 together with assump-

tion B3-(ii) and the nondegeneracy of the distribution of εd given Z by assumption B3-(ii). The

second condition of assumption C1-(i) follows from θ−e > 0 by assumption A1, and assumption

A2-(i). Regarding assumption C1-(ii), following Proposition 4, ψ′(e, z) = Γ(p, z). From assump-

tion A2-(iv), ψ′(e, z) > 0 leads to Γ(p, z) > 0. Similarly, ψ′′(e, z) = (∂Γ(p, z)/∂p)/e′(p, z). Since

e′(p, z) < 0 by Lemma 2 and ψ′′(e, z) > 0 by assumption A2-(iv), we have ∂Γ(p, z)/∂p < 0. Re-

garding assumption C1-(iii), from Proposition 4, θ′(p, z) = ∂∆(p, z)/∂p−R(p, z) and by Lemma

2, p′(θ, z) > 0 or equivalently θ′(p, z) > 0. Thus, we have ∂∆(p, z)/∂p > R(p, z), which implies

Γ(p, z) < co(p, z) as discussed in the text. Regarding assumption C1-(iv), it is a direct conse-

quence of assumption B1. Given the monotonic relationship between θ and P , the error terms

are also conditionally independent of P given Z. The desired result follows from εd = φd(Y, P, Z),

εc = φc(Y,C, P, Z) and εt = φt(Y,C, P, T, Z). Lastly, the first part of assumption C1-(v) follows

from the assumptions on F (·|·) combined with P = p(θ, Z) and p′(·, ·) > 0 by Lemma 2. Re-

garding the second part of assumption C1-(v), using Y = y(P,Z, εd) and C = (θ− e)co(Y,Z, εc)
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combined with assumptions B1 and B3-(ii), we obtain GY |P,Z(·|p, z) = Gεd|Z [y−1(p, z, ·)|z] and

GC|Y,P,Z(·|y, p, z) = Gεc|εd,Z [c−1
o (y, z, ·/(θ − e))|εd, z], which establish the desired property. 2

Proof of Lemma 7: To prove the first part, we need to show that the conditional distribution

of (Y,C, P, T ) given Z induced by a structure S ∈ S satisfying the conclusions of Lemmas 1-2

and Proposition 3 also satisfy assumption C1. Regarding assumption C1-(i), the first condition

follows as in the proof of Lemma 6. The second condition follows by taking the conditional

expectation of (21) given (P,Z) and using θ − e > 0 by asssumption A1 and co(p, z) > 0.

The latter inequality follows from (26) using co(·, ·, ·) ≥ 0 together with assumption B3-(ii).

Regarding assumption C1-(ii), from the second part of the proof of Proposition 3 with H(θ −
e, z) = θ − e, we have dt†/dH = −ψ′[e(θ, z), z] < 0 implying ψ′[e(θ, z), z] > 0. From (33),

ψ′(e, z) = Γ[p(e, z), z]. Hence, Γ[p(e, z), z] > 0. Regarding Γ′[p(e, z), z], the proof of Lemma

1 shows that the second partial derivative of the firm’s objective function is equal to −ψ′′(e)

because of the linearity in C of the transfer (24) and H(θ− e, z) = θ− e. Thus, strict concavity

implies ψ′′(e) > 0. As ψ′′(e) = Γ′[p(e, z), z]p′(e, z) from (33), where p′(e, z) < 0 because p′(θ, z) >

0 and e′(θ, z) < 0 by assumption, it follows that Γ′[p(e, z), z] < 0.

Regarding assumption C1-(iii), we have ∆′(p, z) = θ′(p, z) − e′(p, z) > 0 because p′(θ, z) > 0

and e′(p, z) < 0 by assumption. Moreover, from (35), we have θ′(p, z) = ∆′(p, z) − R(p, z) > 0

by assumption. Thus ∆′(p, z) > R(p, z) or equivalently Γ′(p, z) < co(p, z) as discussed in the

text. Regarding assumption C1-(iv), from (20), (21), (24) and assumption B3-(ii), the proofs of

Lemma 4, Propositions 4 and 5 show that the error terms (εd, εc, εt) can be recovered through

identified functions φd(Y, P, Z), φc(Y,C, P, Z) and φt(Y, P,C, T, Z). Since P and θ are in a

bijective relationship, the latter are conditionally independent of P given Z in view of assumption

B1. Regarding assumption C1-(v), the first part follows from p′(θ, z) > 0 and fθ|Z(·|·) > 0,

while the second part follows from assumption B3-(ii), GY |P,Z(·|p, z) = Gεd|Z [y−1(p, z, ·)|z] and

GC|Y,P,Z(·|y, p, z) = Gεc|εd,Z [c−1
o (y, z, ·/(θ−e))|εd , z], where the latter uses the bijective mapping

bewteen P and θ given z and assumptions B1-B2.

Turning to the second part, let the observations (Y, P,C, T, Z) and a function µ(·) satisfy

assumption C1. We need to define [y, co, ψ, F,G, µ] from the observables and show that these

functions satisfy assumptions A1, B1–B3, as well as the conclusions of Lemmas 1 and 2 and

Proposition 3. In view of Proposition 5, let

y(p, z, εd) = G−1
Y |P,Z [GY |P,Z(εd|po(z), z)|p, z]

co(y, z, εc) = G−1
Co|Y,P,Z

[
GCo|Y,P,Z[εc|yo(z), p†(z, εd), z]|y, p, z

]
,

where y = y(p, z, εd) and Co = C/∆(P,Z) with ∆(p, z) given in (30). Note that assumption
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B3-(i) is satisfied by construction. By assumption C1-(v), y(p, z, ·) and co(y, z, ·) are strictly

increasing in their last arguments. Thus, we can define

εd = y−1(P,Z, Y )

εc = c−1
o (Y,Z,Co).

Note that C = ∆(P,Z)Co = ∆(P,Z)co(Y,Z, εc), where ∆(P,Z) = θ − e and co(Y,Z, εc) ≥ 0

because C ≥ 0. Using assumption C1-(i), E[C|P,Z] = ∆(P,Z)co(P,Z) > 0 leading to ∆(P,Z) >

0 because co(P,Z) > 0 by (29). Thus assumption A1 is satisfied. Using assumption C1-(iv),

we have Gεd|Z(·|z) = Gεd|P,Z(·|po(z), z) = GY |P,Z(·|po(z), z). Thus, Gεd|Z(·|z) is nondegenerated

and strictly increasing in its first argument by assumption C1-(v). Similarly, using assumption

C1-(iv), we have Gεc|εd,Z(·|εd, z) = Gεc|εd,P,Z(·|εd, p†(z, εd), z) = Gεc|Y,P,Z(·|yo(z), p†(z, εd), z) =

GCo|Y,P,Z[·|yo(z), p†(z, εd), z], which is nondegenerated and strictly increasing in its first argument

by assumption C1-(v) and Co = C/∆(P,Z) with ∆(P,Z) > 0. Hence, assumption B3-(ii) is

satisfied.

In view of Proposition 4, let

ψ(e, z) = E [T |P = p(z), Z = z] +
∫ e

0
Γ[p(ẽ, z)]dẽ

θ = θ(P,Z) ≡ ∆(P,Z) +
∫ p(Z)

P
R(p̃, Z)dp̃,

where p(·, z) is the inverse of e(·, z) =
∫ p(z)
· R(p̃, z)dp̃, which is strictly decreasing as R(·, ·) > 0

from assumption C1-(iii). The distribution F (θ|Z) is then defined as the distribution of θ(P,Z)

given Z. Note that θ′(p, z) > 0 because ∆′(p, z) > R(p, z) by assumption C1-(iii). Thus

F (θ|z) admits a density, which is strictly positive on [θ(z), θ(z)] as defined in (37) and (38) by

assumption C1-(v). Moreover, the conclusions of Lemma 2 (see items (ii)-(iii) preceding Lemma

7) hold from assumptions C1-(iii). For, item (iii) follows from θ′(p, z) > 0 and item (ii) follows

from e′(p, z) = −R(p, z) < 0 by assumption C1-(iii). In addition, assumption B2 is satisfied as

θ(z) − e(θ(z), z) = ∆(p(z), z) = 1 by (29) and (30), while e(θ(z), z) = 0 because e(p(z), z) = 0

by construction and p(·, z) strictly increasing leading to p(z) = p(θ, z).

Following (24), let

εt = T − ψ(e, Z) −
∫ θ(Z)

θ
ψ′(e(θ̃, Z), Z)dθ̃ + ψ′(e, Z)[(C/co(P,Z)) − ∆(P,Z)],

where e = e(P,Z) and ψ(·, ·) are defined as above. Note that (εd, εc, εt) are conditionally

independent of P given Z by assumption C1-(iv), and hence of θ given Z. In particular, E[εt|Z] =
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E[εt|p(Z), Z] = E[T |p(Z), Z] − ψ(e(θ(Z), Z)) as the third term vanishes when θ = θ[p(Z), Z] =

θ(Z) and the fourth term is equal to zero because E[C|p(Z), Z] = ∆(p(Z), Z)co(p(Z), Z). Hence,

assumption B1 is satisfied. Lastly, the conclusions of Lemma 1 and Proposition 3 (see items (i)

and (iv)-(v) preceding Lemma 7) hold from assumption C1-(ii). For, with the above transfer

in the basic model, the proof of Lemma 1 shows that (i) is equivalent to ψ′′(e, z) > 0, which

is ensured by ψ′′(e, z) = Γ′(p, z)e′(p, z), Γ′(p, z) < 0 by assumption C1-(ii) and e′(p, z) < 0 as

above. In the basic model with the above transfer, the proof of Proposition 3 shows that item

(iv) holds when e′(θ, z) < 0, which is established above. Similarly, in the basic model with the

above transfer, the proof of Proposition 3 shows that item (v) holds when ψ′(e, z)) > 0 and

ψ′′(e(θ, z), z)e′(θ, z)/[1 − e′(θ, z)] < 0, which follows from assumption C1-(ii) and the previous

results. 2

Proof of Proposition 6: Let S = [y, co, ψ, F,G, λ] be a structure inducing a distribution for

(Y,C, P, T ) given Z satisfying assumption C1. Define λ̃(·) = λ(·)+ε, with ε 6= 0 sufficiently small

so that λ̃(·) and the distribution of (Y,C, P, T ) given Z satisfy assumption C1. From Lemma

7, there exists a structure S̃ = [ỹ, c̃o, ψ̃, F̃ , G̃, λ̃] that satisfies assumptions A1, B1–B3 as well

as the conclusions of Lemmas 1 and 2 and Proposition 3 and that rationalizes the observables

(Y,C, P, T ) given Z. The structure S̃ differs from S because λ̃(·) 6= λ(·) though ỹ(·, ·, ·) = y(·, ·, ·)
and G̃εd|Z(·|·) = Gεd|Z(·|·). On the other hand, the remaining functions differ.2

Proof of Lemma 8: From (B.8), we have ψ′(e) = Γ[p∗(e, z), z], where e = e∗(θ, z). Hence,

from (14) and making the change of variable p̃ = p∗[e∗(θ̃, z), z] = p∗(θ̃, z), we obtain

U∗(θ) =
∫ p(z)

p
Γ(p̃, z)

∂θ∗(p̃, z)
∂p

dp̃ =
∫ p(z)

p
Γ(p̃, z)

[
∂∆(p̃, z)
∂p

−R(p̃, z)
]
dp̃,

where the second equality follows from (B.12). Then, (45) follows from the participation con-

straint (10) and

∂E[T |P = p, Z = z]
∂p

= −Γ(p, z)
∂∆(p, z)
∂p

,

which follows from (31).

Similarly, making the change of variable p̃ = p∗(ẽ, z) in (33), we obtain

ψ(e, z) = E[T |P = p(z), Z = z] +
∫ p∗(e,z)

p∗(0,z)
Γ(p̃, z)

∂e∗(p̃, z)
∂p

dp̃

= E[T |P = p(z), Z = z] +
∫ p(z)

p
Γ(p̃, z)R(p̃, z)dp̃, (B.15)
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where the second equality follows from p∗(0, z) = p(z) and (B.11). Thus, using (30), (B.6) and

(B.8) into (24) we obtain

T = E[T |P,Z] − Γ(P,Z)
co(P,Z)

(
C − E[C|P,Z]

)
+ εt. (B.16)

We now compute Γ(P,Z)/co(P,Z). From (30), we note that ∆(P,Z)co(P,Z) = E[C|P,Z].

Thus, differentiating with respect to p gives

co(P,Z)
∂∆(P,Z)

∂p
=
∂E[C|P,Z]

∂p
− ∆(P,Z)

∂co(P,Z)
∂p

,

where

∂co(P,Z)
∂p

=
co(P,Z)
E[C|P,Z]

[
Py′(P,Z) + µy(P,Z)

]
=

1
∆(P,Z)

[
Py′(P,Z) + µy(P,Z)

]

from (29)–(30). Hence,

co(P,Z)
∂∆(P,Z)

∂p
=
∂E[C|P,Z]

∂p
−
[
Py′(P,Z) + µy(P,Z)

]
.

It follows from (31) that

Γ(P,Z)
co(P,Z)

= − ∂E[T |P,Z]/∂p
∂E[C|P,Z]/∂p−[Py′(P,Z)+µy(P,Z)]

.

This establishes (44) in view of (B.16). Lastly, E[εt|P,Z] = E[εt|Z] = 0 by Assumption B1. 2

Proof of Proposition 7: Because θ and P are in a bijection given Z, we have E[Cεt|P,Z] =

E[Cεt|θ, Z] = E[C|θ, Z]E[εt|θ, Z] = 0, where the second equality follows from assumption B4,

while the third equality follows from E[εt|θ, Z] = 0 by assumption B1. We then multiply (44) by

C and take the expectation of the resulting equation conditional on (P,Z). Using E[Cεt|P,Z] =

0, it gives

E{C(T − E[T |P,Z])|P,Z} = − ∂E[T |P,Z]/∂p
∂E[C|P,Z]/∂p−[Py′(P,Z)+µy(P,Z)]

×
(
E{C(C−E[C|P,Z])|P,Z}

)
.

Since E{C(T −E[T |P,Z])|P,Z} = Cov[C, T |P,Z] and E{C(C−E[C|P,Z])|P,Z} = Var[C|P,Z],

solving for µ gives (46) when (P,Z) = (p, z). Then λ(z) is obtained from µ(z) = λ(z)/[1+λ(z)].

Moreover, Cov[C, T |P,Z] = E{C(T − E[T |P,Z])|P,Z} = −[Γ(P,Z)/co(P,Z)]Var[C|P,Z] by

(B.16) and Assumption B4. Thus, Cov[C, T |P,Z] < 0 as Γ(·, ·) > 0 and co(·, ·) > 0.2

Proof of Proposition 8: Let S = [y, co,H, ψ,G, F, λ] ∈ S ′ generating the observations

(Y,C, P, T ) given Z. We construct a structure S = [ỹ, c̃o, ψ̃, G̃, F̃ , λ̃] ∈ S with H(·, ·) the identity
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function. In view of the nonidentification of λ(·) in the basic model as shown in Proposition 6, one

can choose λ̃(·) = λ(·). We can also consider that the error terms and unobserved heterogeneity

term remain the same leading to G̃(·, ·, ·|·) = G(·, ·, ·|·). Moreover, let ỹ(·, ·, ·) = y(·, ·, ·) and

c̃o(·, ·, ·) = co(·, ·, ·). Hence, from (25) and (26), we have ỹ(p, z) = y(p, z) and c̃o(p, z) = co(p, z).

We note that E[C|P = p, Z = z] = H(θ−e, z)co(p, z) = (θ̃− ẽ)c̃o(p, z). Thus, H(θ−e, z) = θ̃− ẽ
or equivalently H[∆(p, z), z] = ∆̃(p, z). From observations (Y,C, P, T ), one can define the disu-

tility function ψ̃(e, z) and the optimal effort function ẽ(p, z) from (33) and (34), where ∆(·, ·),
Γ(·, ·) and R(·, ·) are replaced by ∆̃(·, ·), Γ̃(·, ·) and R̃(·, ·), respectively. The distribution F̃ (·|·) is

then constructed as the distribution of the term θ̃ defined in (35) with ∆(·, ·) and R(·, ·) replaced

by ∆̃(·, ·) and R̃(·, ·), respectively.

By the extension of Lemma 6 with H(·, ·) given, the conditional distribution of (Y,C, P, T )

given Z induced by the structure S must satisfy assumption D2. We first show that this

distribution also satisfies assumption C1. Assumption C1-(i) is trivially satisfied. Regarding

assumption C1-(ii), we have Γ(p, z) = −(∂E[T |P = p, Z = z]/∂p)/(∂∆(p, z)/∂p), Γ̃(p, z) =

−(∂E[T |P = p, Z = z]/∂p)/(∂∆̃(p, z)/∂p) with ∆̃(p, z) = H(∆(p, z), z). Thus Γ̃(p, z) =

Γ(p, z)/H ′(∆(p, z), z). Since H ′(·, ·) > 0 by assumption A2-(iii), we have Γ̃(p, z) > 0 as

Γ(p, z) > 0 by assumption D2-(ii). Regarding its derivative, we obtain

∂Γ̃(p, z)
∂p

=
H ′(∆(p, z), z)(∂Γ(p, z)/∂p) − Γ(p, z)H ′′(∆(p, z), z)(∂∆(p, z)/∂p)

H ′2(∆(p, z), z)
< 0,

since H ′(·, ·) > 0 and H ′′(·, ·) ≥ 0 by assumption A2-(iii), and Γ(p, z) > 0, ∂Γ(p, z)/∂p < 0

and ∂∆(p, z)/∂p > 0 by assumption D2-(ii,iii). Thus assumption C1-(ii) is satisfied. Regarding

C1-(iii), we have ∂∆̃(p, z)/∂p = H ′(∆(p, z), z)(∂∆(p, z)/∂p) > 0 since H ′(·, ·) > 0 by assump-

tion A2-(iii) and ∂∆(p, z)/∂p > 0 by assumption D2-(iii). Since Γ̃(p, z) = Γ(p, z)/H ′(∆(p, z), z).

From assumption D2-(iii), we have Γ(p, z) < H ′(∆(p, z), z)co(p, z). Since H ′(·, ·) > 0 by as-

sumption A2-(iii), this gives Γ̃(p, z) < co(p, z). Regarding C1-(iv), we have εd = φd(Y, P, Z) =

φ̃d(Y, P, Z), εc = φc(Y, P,C, Z) = φ̃c(Y, P,C, Z) and εt = φt(Y, P,C, T, Z) = φ̃t(Y, P,C, T, Z)

showing that assumption C1-(iv) is satisfied in view of assumption D2-(iv). Lastly, assumption

C1-(v) is trivially satisified in view of assumption D2-(v).

We now invoke the second part of Lemma 7, which establishes the existence of a basic

structure in S that rationalizes the conditional distribution of (Y,C, P, T ) given Z. Hence, this

basic structure is observationally equivalent to S. 2
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